Missing Values using KNN¶
KNN adalah algoritma yang berguna untuk mencocokkan suatu titik dengan tetangga terdekatnya dalam ruang multi-dimensi. Ini dapat digunakan untuk data yang kontinu, diskrit, ordinal, dan kategoris yang membuatnya sangat berguna untuk menangani semua jenis data yang hilang.
Asumsi di balik menggunakan KNN untuk nilai yang hilang adalah bahwa nilai poin dapat didekati dengan nilai dari poin yang paling dekat dengannya, berdasarkan pada variabel lain.
Mari kita simpan contoh sebelumnya dan tambahkan variabel lain, penghasilan orang tersebut. Sekarang kami memiliki tiga variabel, jenis kelamin, pendapatan dan tingkat depresi yang memiliki nilai yang hilang. Kami kemudian berasumsi bahwa orang-orang dengan pendapatan yang sama dan jenis kelamin yang sama cenderung memiliki tingkat depresi yang sama. Untuk nilai yang hilang, kita akan melihat jenis kelamin orang tersebut, pendapatannya, mencari k tetangga terdekatnya dan mendapatkan tingkat depresi mereka. Kita kemudian dapat memperkirakan tingkat depresi orang yang kita inginkan.
Kalibrasi Parameter KNN¶
Jumlah tetangga yang harus dicari¶
Mengambil k rendah akan meningkatkan pengaruh kebisingan dan hasilnya akan kurang digeneralisasikan. Di sisi lain, mengambil k tinggi akan cenderung mengaburkan efek lokal yang persis apa yang kita cari. Juga disarankan untuk mengambil k yang aneh untuk kelas biner untuk menghindari ikatan.
Metode agregasi untuk digunakan¶
Di sini kita memungkinkan untuk mean aritmatika, median dan mode untuk variabel numerik dan mode untuk yang kategorikal
Normalisasi data¶
Ini adalah metode yang memungkinkan setiap atribut memberikan pengaruh yang sama dalam mengidentifikasi tetangga saat menghitung jenis jarak tertentu seperti yang Euclidean. Anda harus menormalkan data Anda ketika skala tidak memiliki arti dan / atau Anda memiliki skala tidak konsisten seperti sentimeter dan meter. Ini menyiratkan pengetahuan sebelumnya tentang data untuk mengetahui mana yang lebih penting. Algoritma secara otomatis menormalkan data ketika variabel numerik dan kategorikal disediakan.
Atribut numerik jarak¶
Di antara berbagai metrik jarak yang tersedia, kami akan fokus pada yang utama, Euclidean dan Manhattan. Euclidean adalah ukuran jarak yang baik untuk digunakan jika variabel input bertipe sama (mis. Semua lebar dan tinggi yang diukur). Jarak Manhattan adalah ukuran yang baik untuk digunakan jika variabel input tidak dalam jenis yang sama (seperti usia, tinggi, dll ...).
Atribut kategorikal jarak¶
tanpa transformasi sebelumnya, jarak yang berlaku terkait dengan frekuensi dan kesamaan. Atribut kategorikal hampir sama dengan nominal karena dengan tipe ini akan dinormalisasikan menjadi numerik atau angka untuk bisa dirukur jaraknya.
Contoh Datanya sebagai berikut¶
Pertama import data terlebih dahulu di code untuk bisa ditampilkan.Pada Contoh Berikut saya mengambil data yang terkena HIV,saya mengambil data tersebut dari internet.
import pandas as pd import math as mt from sklearn.preprocessing import LabelEncoder data = pd.read_csv('HIVaids.csv', delimiter=';', decimal=',') #encode fitur tipe biner X = data.iloc[:,:].values labelEncode_X = LabelEncoder() X[:,4] = labelEncode_X.fit_transform(X[:,4]) df = pd.DataFrame(data) df.style.highlight_null(null_color='red').hide_index()
Berikut Tampilan Data yang ada data kosong (null) missing values untuk bisa di knn
no | income | days | delay | gender | age | hiv | emergency |
---|---|---|---|---|---|---|---|
1 | 3358 | 30 | 4 | Male | 20.6708 | 87 | 89 |
2 | 3535 | 16 | 17 | Male | 55.2882 | 95 | 77 |
3 | 3547 | 40 | 1 | Male | 55.9151 | 95 | 116 |
4 | 3592 | 13 | 10 | Male | 61.6646 | 59 | 73 |
5 | 3728 | 19 | 6 | Male | 30.1273 | 67 | 73 |
6 | 3790 | 13 | 3 | Male | 57.0623 | 76 | 69 |
7 | 3807 | 37 | 5 | Male | 24.6762 | 74 | 77 |
8 | 3808 | 31 | 7 | Male | 28.2683 | 91 | 110 |
9 | 4253 | 40 | 3 | Male | 22.6037 | 115 | 110 |
10 | 4356 | 31 | 7 | Male | 21.399 | 86 | 83 |
11 | 4384 | 35 | 8 | Male | 36.3806 | 76 | 90 |
12 | 4542 | 22 | 11 | Female | 21.9576 | 71 | 89 |
13 | 4705 | 18 | 1 | Female | 21.6838 | 127 | 109 |
14 | 4744 | 15 | 25 | Male | 57.566 | 82 | 85 |
15 | 4802 | 36 | 0 | Male | 62.475 | 88 | 97 |
16 | 4941 | 46 | 4 | Female | 19.0144 | 69 | 88 |
17 | 4983 | 33 | 5 | Male | 38.3929 | 102 | 117 |
18 | 5129 | 26 | 1 | Male | 25.0459 | 77 | 89 |
19 | 5154 | 35 | 5 | Male | 22.1903 | 82 | 95 |
20 | 5162 | 33 | 1 | Male | 25.0185 | 118 | 101 |
21 | 5174 | 38 | 4 | Female | 37.2704 | 87 | 99 |
22 | 5208 | 31 | 8 | Female | 21.3771 | 97 | 90 |
23 | 5253 | 29 | 1 | Male | 33.1335 | 104 | 105 |
24 | 5298 | 30 | 3 | Male | 22.9569 | 87 | 86 |
25 | 5640 | 34 | 7 | Male | 25.9986 | 93 | 113 |
26 | 5668 | 27 | 7 | Male | 40.9227 | 72 | 79 |
27 | 5680 | 17 | 1 | Male | 27.7563 | 84 | 90 |
28 | 5699 | 26 | 1 | Female | 34.2231 | 95 | 108 |
29 | 5713 | 36 | 8 | Male | 16.2683 | 89 | 97 |
30 | 5736 | 18 | 9 | Male | 16.1478 | 89 | 86 |
31 | 5754 | 36 | 1 | Male | 16.3368 | 87 | 86 |
32 | 5776 | 26 | 8 | Male | 17.128 | 71 | 88 |
33 | 6122 | 29 | 1 | Male | 56.2108 | 95 | 103 |
34 | 6163 | 21 | 1 | Male | 19.3593 | 112 | 106 |
35 | 6179 | 22 | 2 | Male | 38.0123 | 89 | 95 |
36 | 6671 | 30 | 7 | Female | 27.8056 | 71 | 82 |
37 | 6859 | 27 | 1 | Male | 34.2122 | 74 | 79 |
38 | 6870 | 22 | 0 | Male | 42.4832 | 84 | 95 |
39 | 6914 | 43 | 0 | Male | 61.5222 | 85 | 90 |
40 | 6937 | 18 | 0 | Female | 21.191 | 94 | 81 |
41 | 6977 | 30 | 1 | Male | 36.2108 | 97 | 94 |
42 | 7120 | 39 | 0 | Male | 69.7057 | 84 | 86 |
43 | 7309 | 31 | 0 | Female | 50.6667 | 85 | 95 |
44 | 7321 | 23 | 0 | Male | 26.0041 | 84 | 83 |
45 | 7548 | 31 | 0 | Male | 24.3669 | 108 | 106 |
46 | 2364 | 41 | 14 | Male | 25.8097 | 84 | 94 |
47 | 2600 | 3333 | 9 | Male | 43.9398 | 86 | 80 |
48 | 2761 | 40 | 3 | Female | 24.3696 | 98 | 112 |
49 | 3237 | 65 | 9 | Male | 49.8508 | 67 | 67 |
50 | 3277 | 51 | 1 | Male | 37.4702 | 104 | 96 |
51 | 3346 | 44 | 18 | Female | 57.2758 | 79 | 85 |
52 | 3359 | 59 | 9 | Female | 56.8953 | 84 | 91 |
53 | 3373 | 39 | 28 | Female | 26.308 | 87 | 91 |
54 | 3544 | 32 | 14 | Male | 54.5298 | 81 | 98 |
55 | 3655 | 57 | 5 | Female | 21.9055 | 90 | 103 |
56 | 3762 | 48 | 6 | Male | 20.3559 | 85 | 93 |
57 | 3919 | 58 | 1 | Male | 30.3655 | 99 | 95 |
58 | 4094 | 50 | 2 | Male | 19.7262 | 79 | 93 |
59 | 4133 | 34 | 14 | Male | 20 | 70 | 88 |
60 | 4183 | 42 | 3 | Male | 26.2341 | 98 | 116 |
61 | 4189 | 69 | 4 | Female | 29.462 | 75 | 86 |
62 | 4315 | 63 | 0 | Male | 38.141 | 107 | 130 |
63 | 4482 | 58 | 14 | Female | 18.2341 | 86 | 103 |
64 | 4638 | 20 | 17 | Male | 20.512 | 82 | 72 |
65 | 4678 | 63 | 7 | Male | 46.6448 | 96 | 95 |
66 | 4696 | 54 | 4 | Male | 46.9569 | 101 | 112 |
67 | 4755 | 24 | 18 | Male | 27.5127 | 105 | 102 |
68 | 4837 | 42 | 10 | Male | 19.6906 | 83 | 88 |
69 | 4996 | 51 | 12 | Male | 43.0281 | 77 | 78 |
70 | 5009 | 50 | 7 | Male | 24.3806 | 61 | 104 |
71 | 5014 | 46 | 7 | Female | 23.7618 | 75 | 90 |
72 | 5192 | 60 | 1 | Male | 58.6283 | 87 | 97 |
73 | 5204 | 71 | 0 | Male | 59.0746 | 97 | 107 |
74 | 5238 | 44 | 3 | Male | 45.1006 | 99 | 103 |
75 | 5280 | 83 | 1 | Male | 48.6434 | 78 | 88 |
76 | 5289 | 52 | 1 | Male | 48.5722 | 84 | 85 |
77 | 5456 | 48 | 14 | Male | 41.1636 | 80 | 101 |
78 | 5458 | 44 | 14 | Male | 34.4778 | 84 | 95 |
79 | 5474 | 65 | 2 | Female | 28.6598 | 95 | 86 |
80 | 5568 | 64 | 1 | Female | 51.9918 | 75 | 79 |
81 | 5580 | 56 | 7 | Male | 17.7933 | 86 | 95 |
82 | 5581 | 65 | 2 | Male | 26.3053 | 85 | 95 |
83 | 5628 | 51 | 3 | Female | 30.2642 | 81 | 85 |
84 | 6154 | 43 | 5 | Female | 22.6064 | 74 | 80 |
85 | 6180 | 59 | 12 | Male | 20.7201 | 67 | 84 |
86 | 6314 | 58 | 3 | Male | 16.6927 | 80 | 99 |
87 | 6340 | 71 | 0 | Male | 19.3238 | 76 | 72 |
88 | 6564 | 69 | 0 | Male | 34.4997 | 67 | 74 |
89 | 6614 | 57 | 0 | Male | 45.1116 | 80 | 101 |
90 | 6686 | 44 | 14 | Female | 38.3491 | 90 | 100 |
91 | 6795 | 55 | 0 | Male | 30.7159 | 87 | 104 |
92 | 7080 | 64 | 5 | Female | 76.6598 | 76 | 106 |
93 | 7084 | 54 | 2 | Male | 36.5722 | 87 | 93 |
94 | 7271 | 55 | 0 | Male | 41.7659 | 100 | 95 |
95 | 7371 | 55 | 1 | Male | 56.7858 | 80 | 88 |
96 | 2569 | 49 | 35 | Male | 18.7159 | 50 | 101 |
97 | 3058 | 56 | 28 | Male | 22.2533 | 65 | 75 |
98 | 3645 | 43 | 45 | Male | 27.4935 | 72 | 90 |
99 | 3844 | 73 | 9 | Male | 26.1164 | 79 | 94 |
100 | 4725 | 124 | 10 | Male | 32.9172 | 93 | 97 |
101 | 4744 | 65 | 25 | Male | 57.566 | 105 | 119 |
102 | 4807 | 64 | 14 | Female | 47.7974 | 74 | 74 |
103 | 4892 | 62 | 21 | Male | 22.0397 | 76 | 88 |
104 | 4962 | 63 | 1 | Female | 25.1964 | 69 | 67 |
105 | 5125 | 78 | 12 | Male | 17.5387 | 94 | 118 |
106 | 5222 | 63 | 30 | Male | 22.5298 | 77 | 85 |
107 | 5253 | 86 | 1 | Male | 33.1335 | 106 | 128 |
108 | 5386 | 78 | 21 | Male | 20.8761 | 78 | 93 |
109 | 5534 | 87 | 14 | Male | 29.2621 | 75 | 82 |
110 | 5712 | 88 | 14 | Male | 22.2697 | 70 | 68 |
111 | 5837 | 82 | 1 | Female | 33.3087 | 82 | 110 |
112 | 5879 | 75 | 21 | Male | 25.8453 | 80 | 105 |
113 | 5893 | 71 | 21 | Male | 22.8118 | 65 | 90 |
114 | 5916 | 84 | 0 | Female | 26.8556 | 93 | 73 |
115 | 6410 | 80 | 14 | Male | 32.1725 | 85 | 98 |
116 | 7173 | 84 | 4 | Male | 24.9801 | 72 | 75 |
117 | 7221 | 98 | 0 | Male | 63.5044 | 74 | 79 |
118 | 2453 | 120 | 10 | Male | 37.2758 | 63 | 99 |
119 | 2653 | 97 | 28 | Male | 30.0068 | 93 | 112 |
120 | 4218 | 82 | 28 | Male | 25.9904 | 74 | 92 |
121 | 4542 | 121 | 11 | Female | 21.9576 | 86 | 114 |
122 | 4902 | 102 | 8 | Male | 16.1424 | 87 | 77 |
123 | 4933 | 134 | 0 | Male | 18.4559 | 69 | 83 |
124 | 4941 | 131 | 4 | Female | 19.0144 | 96 | 96 |
125 | 5085 | 117 | 2 | Male | 49.0267 | 67 | 71 |
126 | 5111 | 107 | 7 | Male | 21.6947 | 71 | 80 |
127 | 5154 | 120 | 5 | Male | 22.1903 | 89 | 109 |
128 | 5222 | 93 | 30 | Male | 22.5298 | 77 | 91 |
129 | 5298 | 107 | 3 | Male | 22.9569 | 117 | 112 |
130 | 5339 | 119 | 7 | Male | 21.8152 | 87 | 82 |
131 | 5387 | 109 | 12 | Male | 21.7988 | 85 | 112 |
132 | 5414 | 105 | 10 | Female | 40.2765 | 93 | 104 |
133 | 5494 | 111 | 7 | Male | 54.6913 | 86 | 86 |
134 | 5896 | 126 | 4 | Female | 26.8775 | 50 | 74 |
135 | 5901 | 115 | 7 | Male | 22.1739 | 112 | 116 |
136 | 6135 | 96 | 18 | Male | 26.5626 | 66 | 105 |
137 | 6173 | 125 | 4 | Male | 35.3046 | 94 | 97 |
138 | 6214 | 112 | 0 | Male | 60.3176 | 65 | 74 |
139 | 6253 | 128 | 0 | Female | 46.4038 | 104 | 112 |
140 | 6433 | 120 | 4 | Male | 23.8604 | 100 | 103 |
141 | 6665 | 119 | 3 | Female | 23.0171 | 106 | 94 |
142 | 6834 | 123 | 0 | Male | 30.7488 | 72 | 75 |
143 | 1176 | 146 | 17 | Female | 19.729 | 65 | 98 |
144 | 2849 | 151 | 0 | Male | 20.0876 | 51 | 86 |
145 | 2882 | 141 | 18 | Male | 19.2334 | 84 | 85 |
146 | 3051 | 131 | 13 | Male | 37.2403 | 68 | 79 |
147 | 3728 | 151 | 6 | Male | 30.1273 | 96 | 105 |
148 | 3913 | 96 | 42 | Female | 23.9233 | 56 | 80 |
149 | 4133 | 133 | 14 | Male | 20 | 82 | 94 |
150 | 4661 | 135 | 17 | Female | 30.8419 | 84 | 93 |
151 | 4678 | 143 | 7 | Male | 46.6448 | 98 | 107 |
152 | 4696 | 150 | 4 | Male | 46.9569 | 120 | 120 |
153 | 4705 | 146 | 1 | Female | 21.6838 | 133 | 111 |
154 | 4802 | 142 | 0 | Male | 62.475 | 101 | 117 |
155 | 4807 | 139 | 14 | Female | 47.7974 | 80 | 78 |
156 | 4983 | 146 | 5 | Male | 38.3929 | 107 | 123 |
157 | 5014 | 151 | 7 | Female | 23.7618 | 97 | 110 |
158 | 5162 | 144 | 1 | Male | 25.0185 | 130 | 118 |
159 | 5238 | 150 | 3 | Male | 45.1006 | 117 | 126 |
160 | 5642 | 162 | 0 | Male | 65.87 | 89 | 103 |
161 | 5699 | 138 | 1 | Female | 34.2231 | 110 | 107 |
162 | 5713 | 144 | 8 | Male | 16.2683 | 100 | 99 |
163 | 5804 | 159 | 2 | Female | 28.8515 | 102 | 107 |
164 | 5818 | 125 | 14 | Male | 34.9268 | 72 | 91 |
165 | 6314 | 140 | 3 | Male | 16.6927 | 87 | 96 |
166 | 6664 | 164 | 2 | Male | 24.7337 | 66 | 73 |
167 | 1048 | 85 | 94 | Male | 20.115 | 63 | 82 |
168 | 1085 | 159 | 11 | Male | 30.7105 | 103 | 97 |
169 | 3237 | 189 | 9 | Male | 49.8508 | 79 | 82 |
170 | 3358 | 175 | 4 | Male | 20.6708 | 97 | 97 |
171 | 3808 | 165 | 7 | Male | 28.2683 | 94 | 111 |
172 | 4094 | 177 | 2 | Male | 19.7262 | 89 | 102 |
173 | 4253 | 175 | 3 | Male | 22.6037 | 114 | 118 |
174 | 4638 | 140 | 17 | Male | 20.512 | 89 | 78 |
175 | 4755 | 128 | 18 | Male | 27.5127 | 105 | 109 |
176 | 4865 | 142 | 35 | Male | 58.3354 | 84 | 103 |
177 | 4892 | 148 | 21 | Male | 22.0397 | 106 | 110 |
178 | 5009 | 174 | 7 | Male | 24.3806 | 77 | 103 |
179 | 5111 | 177 | 7 | Male | 21.6947 | 72 | 81 |
180 | 5125 | 173 | 12 | Male | 17.5387 | 106 | 119 |
181 | 5192 | 179 | 1 | Male | 58.6283 | 93 | 105 |
182 | 5505 | 171 | 1 | Male | 65.4784 | 95 | 93 |
183 | 5581 | 176 | 2 | Male | 26.3053 | 96 | 110 |
184 | 5599 | 148 | 21 | Male | 18.7488 | 72 | 81 |
185 | 5680 | 184 | 1 | Male | 27.7563 | 84 | 90 |
186 | 5782 | 108 | 68 | Female | 19.6715 | 69 | 85 |
187 | 6180 | 177 | 12 | Male | 20.7201 | 81 | 94 |
188 | 6671 | 184 | 7 | Female | 27.8056 | 91 | 92 |
189 | 2124 | 173 | 30 | Male | 30.7625 | 76 | 106 |
190 | 2646 | 187 | 14 | Male | 22.9158 | 97 | 97 |
191 | 2790 | 211 | 0 | Male | 48.8049 | 89 | 99 |
192 | 4189 | 202 | 4 | Female | 29.462 | 81 | 90 |
193 | 4775 | 180 | 28 | Male | 53.5551 | 70 | 86 |
194 | 4933 | 226 | 0 | Male | 18.4559 | 79 | 86 |
195 | 4962 | 210 | 1 | Female | 25.1964 | 71 | 70 |
196 | 5208 | 193 | 8 | Female | 21.3771 | 133 | 111 |
197 | 5456 | 193 | 14 | Male | 41.1636 | 87 | 110 |
198 | 5668 | 219 | 7 | Male | 40.9227 | 76 | 90 |
199 | 5712 | 192 | 14 | Male | 22.2697 | 87 | 85 |
200 | 5893 | 200 | 21 | Male | 22.8118 | 65 | 89 |
201 | 5916 | 205 | 0 | Female | 26.8556 | 92 | 76 |
202 | 6122 | 212 | 1 | Male | 56.2108 | 109 | 117 |
203 | 6136 | 216 | 1 | Male | 32.7912 | 92 | 89 |
204 | 6175 | 278 | 1 | Male | 51.1704 | 99 | 98 |
205 | 6228 | 174 | 3 | Female | 31.5537 | 114 | 108 |
206 | 7173 | 210 | 4 | Male | 24.9801 | 79 | 78 |
207 | 1176 | 216 | 17 | Female | 19.729 | 74 | 100 |
208 | 3467 | 186 | 42 | Male | 25.3936 | 53 | 69 |
209 | 4744 | 217 | 25 | Male | 57.566 | 108 | 118 |
210 | 5386 | 241 | 21 | Male | 20.8761 | 80 | 94 |
211 | 5837 | 242 | 1 | Female | 33.3087 | 93 | 105 |
212 | 6247 | 228 | 13 | Male | 42.3162 | 77 | 80 |
213 | 1892 | 276 | 2 | Male | 21.7796 | 87 | 107 |
214 | 2882 | 262 | 18 | Male | 19.2334 | 94 | 90 |
215 | 3058 | 236 | 28 | Male | 22.2533 | 85 | 88 |
216 | 4342 | 263 | 1 | Male | 44.063 | 79 | 91 |
217 | 4865 | 240 | 35 | Male | 58.3354 | 93 | 105 |
218 | 5085 | 269 | 2 | Male | 49.0267 | 65 | 77 |
219 | 5222 | 247 | 30 | Male | 22.5298 | 88 | 85 |
220 | 5339 | 271 | 7 | Male | 21.8152 | 94 | 89 |
221 | 5474 | 280 | 2 | Female | 28.6598 | 99 | 91 |
222 | 5600 | 232 | 0 | Male | 48.7885 | 75 | 81 |
223 | 2826 | 290 | 14 | Male | 23.2334 | 94 | 108 |
224 | 4725 | 286 | 10 | Male | 32.9172 | 105 | 94 |
225 | 5204 | 299 | 0 | Male | 59.0746 | 99 | 105 |
226 | 6498 | 270 | 28 | Male | 24.0767 | 82 | 101 |
227 | 2081 | 185 | 43 | Male | 17.6975 | 77 | 97 |
228 | 4678 | 340 | 7 | Male | 46.6448 | 108 | 119 |
229 | 5397 | 328 | 0 | Female | 62.7981 | 121 | 108 |
230 | 6214 | 318 | 0 | Male | 60.3176 | 78 | 82 |
231 | 7034 | 280 | 60 | Male | 23.1376 | 78 | 80 |
232 | 1493 | 453 | 60 | Male | 17.8042 | 59 | 81 |
233 | 1836 | 375 | 1 | Male | 47.0554 | 101 | 108 |
234 | 1939 | 295 | 130 | Male | 28.2738 | 67 | 117 |
235 | 2646 | 438 | 14 | Male | 22.9158 | 98 | 94 |
236 | 2653 | 352 | 28 | Male | 30.0068 | 105 | 126 |
237 | 3226 | 444 | 0 | Male | 27.4552 | 76 | 64 |
238 | 3467 | 333 | 42 | Male | 25.3936 | 68 | 74 |
239 | 4342 | 432 | 1 | Male | 44.063 | 92 | 107 |
240 | 4542 | 431 | 11 | Female | 21.9576 | 98 | 114 |
241 | 4661 | 374 | 17 | Female | 30.8419 | 93 | 95 |
242 | 4902 | 397 | 8 | Male | 16.1424 | 92 | 86 |
243 | 4983 | 398 | 5 | Male | 38.3929 | 121 | 132 |
244 | 5111 | 442 | 7 | Male | 21.6947 | 77 | 86 |
245 | 5125 | 510 | 12 | Male | 17.5387 | 112 | 125 |
246 | 5289 | 417 | 1 | Male | 48.5722 | 83 | 83 |
247 | 5386 | 436 | 21 | Male | 20.8761 | 90 | 103 |
248 | 5387 | 480 | 12 | Male | 21.7988 | 94 | 116 |
249 | 5505 | 527 | 1 | Male | 65.4784 | 104 | 87 |
250 | 5580 | 369 | 7 | Male | 17.7933 | 96 | 107 |
251 | 5581 | 378 | 2 | Male | 26.3053 | 95 | 95 |
252 | 5599 | 443 | 21 | Male | 18.7488 | 78 | 80 |
253 | 5668 | 390 | 7 | Male | 40.9227 | 92 | 92 |
254 | 5680 | 403 | 1 | Male | 27.7563 | 94 | 93 |
255 | 5712 | 365 | 14 | Male | 22.2697 | 98 | 86 |
256 | 5772 | 412 | 35 | Male | 26.2587 | 102 | 104 |
257 | 5804 | 354 | 2 | Female | nan | 122 | 105 |
258 | 5811 | 431 | 25 | Male | 80.0328 | 78 | 80 |
259 | 5841 | 415 | 8 | Male | 27.2279 | 82 | 83 |
260 | 6226 | 438 | 0 | Male | 36.8022 | 84 | 92 |
261 | 6247 | 389 | 13 | Male | 42.3162 | 82 | 80 |
262 | 6468 | 513 | 60 | Male | 43.4798 | 99 | 94 |
263 | 6614 | 362 | 0 | Male | 45.1116 | 88 | 106 |
264 | 6665 | 368 | 3 | Female | 23.0171 | 100 | 92 |
265 | 781 | 714 | 15 | Male | 29.8699 | 85 | 85 |
266 | 1048 | 576 | 94 | Male | 20.115 | 91 | 96 |
267 | 1157 | 810 | 23 | Male | 17.3881 | 97 | 84 |
268 | 1493 | 684 | 60 | Male | 17.8042 | 66 | 75 |
269 | 1611 | 511 | 60 | Male | 23.2799 | 69 | 107 |
270 | 1624 | 604 | 1 | Male | 19.5619 | 97 | 85 |
271 | 1939 | 562 | 130 | Male | 28.2738 | 85 | 111 |
272 | 2498 | 615 | 0 | Female | 17.4292 | 86 | 113 |
273 | 2826 | 636 | 14 | Male | 23.2334 | 111 | 101 |
274 | 2849 | 642 | 0 | Male | 20.0876 | 76 | 98 |
275 | 3032 | 525 | 20 | Male | 16.9391 | 79 | 87 |
276 | 3226 | 683 | 0 | Male | 27.4552 | 89 | 78 |
277 | 4218 | 814 | 28 | Male | 25.9904 | 99 | 96 |
278 | 4807 | 532 | 14 | Female | 47.7974 | 84 | 82 |
279 | 5014 | 637 | 7 | Female | 23.7618 | 101 | 114 |
280 | 5222 | 690 | 30 | Male | 22.5298 | 81 | 90 |
281 | 5253 | 591 | 1 | Male | 33.1335 | 114 | 124 |
282 | 5628 | 609 | 3 | Female | 30.2642 | 89 | 78 |
283 | 6059 | 794 | 1 | Female | 16.9801 | 71 | 76 |
284 | 6228 | 662 | 3 | Female | 31.5537 | 128 | 111 |
285 | 6247 | 616 | 13 | Male | 42.3162 | 85 | 82 |
286 | 405 | 986 | 0 | Male | 21.4702 | 66 | 116 |
287 | 626 | 870 | 55 | Male | 19.7536 | 80 | 85 |
288 | 1075 | 907 | 42 | Female | 27.2772 | 63 | 64 |
289 | 2849 | 1040 | 0 | Male | 20.0876 | 91 | 103 |
290 | 3032 | 884 | 20 | Male | 16.9391 | 87 | 93 |
291 | 3226 | 1123 | 0 | Male | 27.4552 | 88 | 81 |
292 | 4864 | 936 | 0 | Female | 53.9767 | 119 | 131 |
293 | 5474 | 1100 | 2 | Female | 28.6598 | 94 | 88 |
294 | 5568 | 1114 | 1 | Female | 51.9918 | 81 | 82 |
295 | 5580 | 1087 | 7 | Male | 17.7933 | 106 | 98 |
296 | 5581 | 1113 | 2 | Male | 26.3053 | 99 | 96 |
297 | 5617 | 1113 | 17 | Male | 19.7864 | 78 | 87 |
298 | 5642 | 1143 | 0 | Male | 65.87 | 104 | 109 |
299 | 5713 | 1016 | 8 | Male | 16.2683 | 126 | 106 |
300 | 5837 | 962 | 1 | Female | 33.3087 | 109 | 110 |
301 | 6140 | 1077 | 44 | Female | 21.4209 | 65 | 88 |
302 | 7061 | 923 | 0 | Male | 36.8816 | 74 | 81 |
303 | 651 | 1491 | 21 | Male | 22.0068 | 71 | 94 |
304 | 2527 | 1294 | 0 | Male | 16.9172 | 93 | 104 |
305 | 2638 | 1093 | 255 | Male | 16.5613 | 78 | 84 |
306 | 4865 | 1363 | 35 | Male | 58.3354 | 88 | 104 |
307 | 5009 | 1537 | 7 | Male | 24.3806 | 76 | 112 |
308 | 5014 | 1523 | 7 | Female | 23.7618 | 105 | 114 |
309 | 5085 | 1512 | 2 | Male | 49.0267 | 75 | 75 |
310 | 1939 | 1926 | 130 | Male | 28.2738 | 95 | 108 |
311 | 2662 | 1569 | 180 | Male | 28.0821 | 90 | 101 |
312 | 2826 | 1809 | 14 | Male | 23.2334 | 104 | 108 |
313 | 2882 | 1716 | 18 | Male | 19.2334 | 100 | 103 |
314 | 3768 | 1916 | 0 | Male | 19.1102 | 69 | 80 |
315 | 4356 | 2000 | 7 | Male | 21.399 | 104 | 91 |
316 | 4638 | 1779 | 17 | Male | 20.512 | 92 | 76 |
317 | 4696 | 1769 | 4 | Male | 46.9569 | 105 | 124 |
318 | 4744 | 1743 | 25 | Male | 57.566 | 97 | 118 |
319 | 6140 | 1742 | 44 | Female | 21.4209 | 67 | 87 |
320 | 1075 | 2259 | 42 | Female | 27.2772 | 78 | 79 |
321 | 1939 | 3111 | 130 | Male | 28.2738 | 88 | 111 |
322 | 2653 | 2191 | 28 | Male | 30.0068 | 117 | 129 |
323 | 3592 | 2569 | 10 | Male | 61.6646 | 76 | 93 |
324 | 3808 | 2434 | 7 | Male | 28.2683 | 105 | 111 |
325 | 651 | 3412 | 21 | Male | 22.0068 | 68 | 92 |
326 | 1939 | 3864 | 130 | Male | 28.2738 | 88 | 105 |
327 | 2600 | 3337 | 9 | Male | 43.9398 | 101 | 84 |
328 | 3835 | 4933 | 14 | Male | 25.9932 | 91 | 88 |
329 | 2773 | 7631 | 42 | Male | 6.51335 | 88 | 103 |
330 | 5142 | 11628 | 57 | Male | 16.4326 | 101 | 95 |
331 | 5964 | 11038 | 0 | Male | 12.8363 | 71 | 73 |
Selanjutnya kita mengimplementasikan rumus jarak ke dalam bentuk fungsi python. yaitu: eulidianDistance() dengan fungsi jarak tipe binary distanceSimetris().
def Zscore(x,mean,std): top = x - mean if top==0: return top else: return round(top / std, 2) #menghitung jarak tipe numerikal def euclidianDistance(x,y): dis = 0 for i in range(len(x)): dis += (x[i] - y[i]) ** 2 return round(mt.sqrt(dis),2) #Menghitung jarak tipe binary def distanceSimetris(x,y): q=r=s=t=0 for i in range(len(x)): if x[i]==1 and y[i]==1: q+=1 elif x[i]==1 and y[i]==0: r+=1 elif x[i]==0 and y[i]==1: s+=1 elif x[i]==0 and y[i]==0: t+=1 return ((r+s)/(q+r+s+t)) def normalisasi(num, col_x): return Zscore(num, pd.Series(data[col_x].values).mean(), pd.Series(data[col_x].values).std())
Kemudian dari dataset tersebut, kita lakukan pengecekan dengan mencari baris yang missing values,.
c_j = 0 for j in df['age'].isna(): if j == True: col_missing = c_j c_j+=1
Pada langkah berikut, kita lakukan perhitungan jarak pada data yang missing dengan seluruh tetangganya dan menampungnya pada dapat dictionary yang ada.
missing_data = df.iloc[col_missing, [2,3,6,7]].values missing_normal = [normalisasi(missing_data[0],data.columns[2]), normalisasi(missing_data[1],data.columns[3]), normalisasi(missing_data[2],data.columns[6]), normalisasi(missing_data[3],data.columns[7])] for i in range(len(data[data.columns[0]])): if i==col_missing: continue; select_data = df.iloc[i, [2,3,6,7]].values normal_data = [normalisasi(select_data[0],data.columns[2]), normalisasi(select_data[1],data.columns[3]), normalisasi(select_data[2],data.columns[6]), normalisasi(select_data[3],data.columns[7])] data.loc[i, 'jarak'] = euclidianDistance(missing_normal,normal_data) + distanceSimetris([X[col_missing, 4]],[X[i, 4]])
Kemudian kita urutkan data tersebut berdasarkan jarak dari yang terkecil sampai ke terbesar. Selanjutnya kita mengisi data yang hilang dengan mengambil rata-rata dari 2 tetangga terdekat.
df = pd.DataFrame(data) df.sort_values(by='jarak', axis=0, ascending=True, inplace=True) df.iloc[-1, [5]] = round(df.iloc[0:2,5].mean(), 2) df.style.hide_index()
Berikut merupakan tampilan dari data yang telah di urutkan. pada baris terakhir telihat bahwa kolom age sudah terisi dengan angka sebagai berikut
no | income | days | delay | gender | age | hiv | emergency | jarak |
---|---|---|---|---|---|---|---|---|
229 | 5397 | 328 | 0 | Female | 62.7981 | 121 | 108 | 0.25 |
13 | 4705 | 18 | 1 | Female | 21.6838 | 127 | 109 | 0.53 |
205 | 6228 | 174 | 3 | Female | 31.5537 | 114 | 108 | 0.6 |
284 | 6228 | 662 | 3 | Female | 31.5537 | 128 | 111 | 0.64 |
161 | 5699 | 138 | 1 | Female | 34.2231 | 110 | 107 | 0.84 |
153 | 4705 | 146 | 1 | Female | 21.6838 | 133 | 111 | 0.86 |
196 | 5208 | 193 | 8 | Female | 21.3771 | 133 | 111 | 0.88 |
300 | 5837 | 962 | 1 | Female | 33.3087 | 109 | 110 | 1.07 |
139 | 6253 | 128 | 0 | Female | 46.4038 | 104 | 112 | 1.31 |
141 | 6665 | 119 | 3 | Female | 23.0171 | 106 | 94 | 1.33 |
163 | 5804 | 159 | 2 | Female | 28.8515 | 102 | 107 | 1.35 |
20 | 5162 | 33 | 1 | Male | 25.0185 | 118 | 101 | 1.48 |
279 | 5014 | 637 | 7 | Female | 23.7618 | 101 | 114 | 1.56 |
129 | 5298 | 107 | 3 | Male | 22.9569 | 117 | 112 | 1.64 |
9 | 4253 | 40 | 3 | Male | 22.6037 | 115 | 110 | 1.66 |
308 | 5014 | 1523 | 7 | Female | 23.7618 | 105 | 114 | 1.67 |
299 | 5713 | 1016 | 8 | Male | 16.2683 | 126 | 106 | 1.68 |
48 | 2761 | 40 | 3 | Female | 24.3696 | 98 | 112 | 1.69 |
157 | 5014 | 151 | 7 | Female | 23.7618 | 97 | 110 | 1.72 |
264 | 6665 | 368 | 3 | Female | 23.0171 | 100 | 92 | 1.73 |
34 | 6163 | 21 | 1 | Male | 19.3593 | 112 | 106 | 1.73 |
240 | 4542 | 431 | 11 | Female | 21.9576 | 98 | 114 | 1.75 |
221 | 5474 | 280 | 2 | Female | 28.6598 | 99 | 91 | 1.82 |
28 | 5699 | 26 | 1 | Female | 34.2231 | 95 | 108 | 1.83 |
124 | 4941 | 131 | 4 | Female | 19.0144 | 96 | 96 | 1.85 |
211 | 5837 | 242 | 1 | Female | 33.3087 | 93 | 105 | 1.92 |
292 | 4864 | 936 | 0 | Female | 53.9767 | 119 | 131 | 1.93 |
273 | 2826 | 636 | 14 | Male | 23.2334 | 111 | 101 | 1.94 |
132 | 5414 | 105 | 10 | Female | 40.2765 | 93 | 104 | 1.96 |
45 | 7548 | 31 | 0 | Male | 24.3669 | 108 | 106 | 1.98 |
22 | 5208 | 31 | 8 | Female | 21.3771 | 97 | 90 | 2 |
135 | 5901 | 115 | 7 | Male | 22.1739 | 112 | 116 | 2.07 |
173 | 4253 | 175 | 3 | Male | 22.6037 | 114 | 118 | 2.08 |
158 | 5162 | 144 | 1 | Male | 25.0185 | 130 | 118 | 2.09 |
152 | 4696 | 150 | 4 | Male | 46.9569 | 120 | 120 | 2.1 |
241 | 4661 | 374 | 17 | Female | 30.8419 | 93 | 95 | 2.13 |
55 | 3655 | 57 | 5 | Female | 21.9055 | 90 | 103 | 2.14 |
202 | 6122 | 212 | 1 | Male | 56.2108 | 109 | 117 | 2.22 |
90 | 6686 | 44 | 14 | Female | 38.3491 | 90 | 100 | 2.22 |
23 | 5253 | 29 | 1 | Male | 33.1335 | 104 | 105 | 2.23 |
79 | 5474 | 65 | 2 | Female | 28.6598 | 95 | 86 | 2.26 |
188 | 6671 | 184 | 7 | Female | 27.8056 | 91 | 92 | 2.26 |
293 | 5474 | 1100 | 2 | Female | 28.6598 | 94 | 88 | 2.3 |
67 | 4755 | 24 | 18 | Male | 27.5127 | 105 | 102 | 2.33 |
175 | 4755 | 128 | 18 | Male | 27.5127 | 105 | 109 | 2.33 |
177 | 4892 | 148 | 21 | Male | 22.0397 | 106 | 110 | 2.35 |
295 | 5580 | 1087 | 7 | Male | 17.7933 | 106 | 98 | 2.35 |
50 | 3277 | 51 | 1 | Male | 37.4702 | 104 | 96 | 2.38 |
21 | 5174 | 38 | 4 | Female | 37.2704 | 87 | 99 | 2.38 |
228 | 4678 | 340 | 7 | Male | 46.6448 | 108 | 119 | 2.38 |
298 | 5642 | 1143 | 0 | Male | 65.87 | 104 | 109 | 2.41 |
224 | 4725 | 286 | 10 | Male | 32.9172 | 105 | 94 | 2.41 |
233 | 1836 | 375 | 1 | Male | 47.0554 | 101 | 108 | 2.41 |
168 | 1085 | 159 | 11 | Male | 30.7105 | 103 | 97 | 2.43 |
63 | 4482 | 58 | 14 | Female | 18.2341 | 86 | 103 | 2.44 |
272 | 2498 | 615 | 0 | Female | 17.4292 | 86 | 113 | 2.46 |
140 | 6433 | 120 | 4 | Male | 23.8604 | 100 | 103 | 2.48 |
281 | 5253 | 591 | 1 | Male | 33.1335 | 114 | 124 | 2.48 |
121 | 4542 | 121 | 11 | Female | 21.9576 | 86 | 114 | 2.5 |
66 | 4696 | 54 | 4 | Male | 46.9569 | 101 | 112 | 2.5 |
180 | 5125 | 173 | 12 | Male | 17.5387 | 106 | 119 | 2.51 |
225 | 5204 | 299 | 0 | Male | 59.0746 | 99 | 105 | 2.52 |
40 | 6937 | 18 | 0 | Female | 21.191 | 94 | 81 | 2.53 |
162 | 5713 | 144 | 8 | Male | 16.2683 | 100 | 99 | 2.55 |
159 | 5238 | 150 | 3 | Male | 45.1006 | 117 | 126 | 2.55 |
74 | 5238 | 44 | 3 | Male | 45.1006 | 99 | 103 | 2.55 |
43 | 7309 | 31 | 0 | Female | 50.6667 | 85 | 95 | 2.57 |
209 | 4744 | 217 | 25 | Male | 57.566 | 108 | 118 | 2.59 |
204 | 6175 | 278 | 1 | Male | 51.1704 | 99 | 98 | 2.6 |
17 | 4983 | 33 | 5 | Male | 38.3929 | 102 | 117 | 2.61 |
151 | 4678 | 143 | 7 | Male | 46.6448 | 98 | 107 | 2.62 |
245 | 5125 | 510 | 12 | Male | 17.5387 | 112 | 125 | 2.63 |
156 | 4983 | 146 | 5 | Male | 38.3929 | 107 | 123 | 2.64 |
94 | 7271 | 55 | 0 | Male | 41.7659 | 100 | 95 | 2.65 |
154 | 4802 | 142 | 0 | Male | 62.475 | 101 | 117 | 2.65 |
111 | 5837 | 82 | 1 | Female | 33.3087 | 82 | 110 | 2.69 |
73 | 5204 | 71 | 0 | Male | 59.0746 | 97 | 107 | 2.69 |
57 | 3919 | 58 | 1 | Male | 30.3655 | 99 | 95 | 2.7 |
150 | 4661 | 135 | 17 | Female | 30.8419 | 84 | 93 | 2.72 |
52 | 3359 | 59 | 9 | Female | 56.8953 | 84 | 91 | 2.72 |
53 | 3373 | 39 | 28 | Female | 26.308 | 87 | 91 | 2.73 |
250 | 5580 | 369 | 7 | Male | 17.7933 | 96 | 107 | 2.74 |
147 | 3728 | 151 | 6 | Male | 30.1273 | 96 | 105 | 2.74 |
249 | 5505 | 527 | 1 | Male | 65.4784 | 104 | 87 | 2.75 |
183 | 5581 | 176 | 2 | Male | 26.3053 | 96 | 110 | 2.76 |
170 | 3358 | 175 | 4 | Male | 20.6708 | 97 | 97 | 2.76 |
101 | 4744 | 65 | 25 | Male | 57.566 | 105 | 119 | 2.77 |
296 | 5581 | 1113 | 2 | Male | 26.3053 | 99 | 96 | 2.78 |
60 | 4183 | 42 | 3 | Male | 26.2341 | 98 | 116 | 2.8 |
312 | 2826 | 1809 | 14 | Male | 23.2334 | 104 | 108 | 2.82 |
190 | 2646 | 187 | 14 | Male | 22.9158 | 97 | 97 | 2.82 |
33 | 6122 | 29 | 1 | Male | 56.2108 | 95 | 103 | 2.82 |
235 | 2646 | 438 | 14 | Male | 22.9158 | 98 | 94 | 2.83 |
256 | 5772 | 412 | 35 | Male | 26.2587 | 102 | 104 | 2.84 |
41 | 6977 | 30 | 1 | Male | 36.2108 | 97 | 94 | 2.86 |
201 | 5916 | 205 | 0 | Female | 26.8556 | 92 | 76 | 2.87 |
65 | 4678 | 63 | 7 | Male | 46.6448 | 96 | 95 | 2.89 |
282 | 5628 | 609 | 3 | Female | 30.2642 | 89 | 78 | 2.91 |
192 | 4189 | 202 | 4 | Female | 29.462 | 81 | 90 | 2.91 |
223 | 2826 | 290 | 14 | Male | 23.2334 | 94 | 108 | 2.92 |
171 | 3808 | 165 | 7 | Male | 28.2683 | 94 | 111 | 2.92 |
251 | 5581 | 378 | 2 | Male | 26.3053 | 95 | 95 | 2.93 |
243 | 4983 | 398 | 5 | Male | 38.3929 | 121 | 132 | 2.93 |
181 | 5192 | 179 | 1 | Male | 58.6283 | 93 | 105 | 2.93 |
137 | 6173 | 125 | 4 | Male | 35.3046 | 94 | 97 | 2.95 |
107 | 5253 | 86 | 1 | Male | 33.1335 | 106 | 128 | 2.97 |
277 | 4218 | 814 | 28 | Male | 25.9904 | 99 | 96 | 2.97 |
114 | 5916 | 84 | 0 | Female | 26.8556 | 93 | 73 | 2.98 |
3 | 3547 | 40 | 1 | Male | 55.9151 | 95 | 116 | 2.98 |
313 | 2882 | 1716 | 18 | Male | 19.2334 | 100 | 103 | 2.99 |
182 | 5505 | 171 | 1 | Male | 65.4784 | 95 | 93 | 2.99 |
239 | 4342 | 432 | 1 | Male | 44.063 | 92 | 107 | 3 |
278 | 4807 | 532 | 14 | Female | 47.7974 | 84 | 82 | 3.03 |
25 | 5640 | 34 | 7 | Male | 25.9986 | 93 | 113 | 3.03 |
100 | 4725 | 124 | 10 | Male | 32.9172 | 93 | 97 | 3.04 |
254 | 5680 | 403 | 1 | Male | 27.7563 | 94 | 93 | 3.04 |
248 | 5387 | 480 | 12 | Male | 21.7988 | 94 | 116 | 3.05 |
62 | 4315 | 63 | 0 | Male | 38.141 | 107 | 130 | 3.05 |
92 | 7080 | 64 | 5 | Female | 76.6598 | 76 | 106 | 3.05 |
83 | 5628 | 51 | 3 | Female | 30.2642 | 81 | 85 | 3.07 |
304 | 2527 | 1294 | 0 | Male | 16.9172 | 93 | 104 | 3.09 |
8 | 3808 | 31 | 7 | Male | 28.2683 | 91 | 110 | 3.11 |
105 | 5125 | 78 | 12 | Male | 17.5387 | 94 | 118 | 3.12 |
236 | 2653 | 352 | 28 | Male | 30.0068 | 105 | 126 | 3.13 |
315 | 4356 | 2000 | 7 | Male | 21.399 | 104 | 91 | 3.13 |
289 | 2849 | 1040 | 0 | Male | 20.0876 | 91 | 103 | 3.14 |
255 | 5712 | 365 | 14 | Male | 22.2697 | 98 | 86 | 3.14 |
317 | 4696 | 1769 | 4 | Male | 46.9569 | 105 | 124 | 3.16 |
220 | 5339 | 271 | 7 | Male | 21.8152 | 94 | 89 | 3.18 |
160 | 5642 | 162 | 0 | Male | 65.87 | 89 | 103 | 3.19 |
324 | 3808 | 2434 | 7 | Male | 28.2683 | 105 | 111 | 3.2 |
172 | 4094 | 177 | 2 | Male | 19.7262 | 89 | 102 | 3.2 |
270 | 1624 | 604 | 1 | Male | 19.5619 | 97 | 85 | 3.2 |
253 | 5668 | 390 | 7 | Male | 40.9227 | 92 | 92 | 3.2 |
127 | 5154 | 120 | 5 | Male | 22.1903 | 89 | 109 | 3.21 |
214 | 2882 | 262 | 18 | Male | 19.2334 | 94 | 90 | 3.22 |
119 | 2653 | 97 | 28 | Male | 30.0068 | 93 | 112 | 3.23 |
191 | 2790 | 211 | 0 | Male | 48.8049 | 89 | 99 | 3.23 |
294 | 5568 | 1114 | 1 | Female | 51.9918 | 81 | 82 | 3.23 |
51 | 3346 | 44 | 18 | Female | 57.2758 | 79 | 85 | 3.25 |
263 | 6614 | 362 | 0 | Male | 45.1116 | 88 | 106 | 3.25 |
207 | 1176 | 216 | 17 | Female | 19.729 | 74 | 100 | 3.25 |
247 | 5386 | 436 | 21 | Male | 20.8761 | 90 | 103 | 3.25 |
29 | 5713 | 36 | 8 | Male | 16.2683 | 89 | 97 | 3.28 |
203 | 6136 | 216 | 1 | Male | 32.7912 | 92 | 89 | 3.29 |
217 | 4865 | 240 | 35 | Male | 58.3354 | 93 | 105 | 3.3 |
71 | 5014 | 46 | 7 | Female | 23.7618 | 75 | 90 | 3.3 |
35 | 6179 | 22 | 2 | Male | 38.0123 | 89 | 95 | 3.31 |
213 | 1892 | 276 | 2 | Male | 21.7796 | 87 | 107 | 3.33 |
91 | 6795 | 55 | 0 | Male | 30.7159 | 87 | 104 | 3.34 |
15 | 4802 | 36 | 0 | Male | 62.475 | 88 | 97 | 3.34 |
72 | 5192 | 60 | 1 | Male | 58.6283 | 87 | 97 | 3.4 |
61 | 4189 | 69 | 4 | Female | 29.462 | 75 | 86 | 3.4 |
267 | 1157 | 810 | 23 | Male | 17.3881 | 97 | 84 | 3.4 |
197 | 5456 | 193 | 14 | Male | 41.1636 | 87 | 110 | 3.4 |
165 | 6314 | 140 | 3 | Male | 16.6927 | 87 | 96 | 3.41 |
242 | 4902 | 397 | 8 | Male | 16.1424 | 92 | 86 | 3.42 |
155 | 4807 | 139 | 14 | Female | 47.7974 | 80 | 78 | 3.42 |
318 | 4744 | 1743 | 25 | Male | 57.566 | 97 | 118 | 3.43 |
93 | 7084 | 54 | 2 | Male | 36.5722 | 87 | 93 | 3.49 |
81 | 5580 | 56 | 7 | Male | 17.7933 | 86 | 95 | 3.5 |
131 | 5387 | 109 | 12 | Male | 21.7988 | 85 | 112 | 3.54 |
115 | 6410 | 80 | 14 | Male | 32.1725 | 85 | 98 | 3.55 |
82 | 5581 | 65 | 2 | Male | 26.3053 | 85 | 95 | 3.56 |
322 | 2653 | 2191 | 28 | Male | 30.0068 | 117 | 129 | 3.57 |
12 | 4542 | 22 | 11 | Female | 21.9576 | 71 | 89 | 3.58 |
1 | 3358 | 30 | 4 | Male | 20.6708 | 87 | 89 | 3.6 |
30 | 5736 | 18 | 9 | Male | 16.1478 | 89 | 86 | 3.6 |
290 | 3032 | 884 | 20 | Male | 16.9391 | 87 | 93 | 3.61 |
56 | 3762 | 48 | 6 | Male | 20.3559 | 85 | 93 | 3.61 |
80 | 5568 | 64 | 1 | Female | 51.9918 | 75 | 79 | 3.63 |
38 | 6870 | 22 | 0 | Male | 42.4832 | 84 | 95 | 3.63 |
84 | 6154 | 43 | 5 | Female | 22.6064 | 74 | 80 | 3.65 |
78 | 5458 | 44 | 14 | Male | 34.4778 | 84 | 95 | 3.66 |
46 | 2364 | 41 | 14 | Male | 25.8097 | 84 | 94 | 3.68 |
260 | 6226 | 438 | 0 | Male | 36.8022 | 84 | 92 | 3.68 |
39 | 6914 | 43 | 0 | Male | 61.5222 | 85 | 90 | 3.69 |
24 | 5298 | 30 | 3 | Male | 22.9569 | 87 | 86 | 3.7 |
31 | 5754 | 36 | 1 | Male | 16.3368 | 87 | 86 | 3.7 |
16 | 4941 | 46 | 4 | Female | 19.0144 | 69 | 88 | 3.72 |
185 | 5680 | 184 | 1 | Male | 27.7563 | 84 | 90 | 3.73 |
306 | 4865 | 1363 | 35 | Male | 58.3354 | 88 | 104 | 3.73 |
27 | 5680 | 17 | 1 | Male | 27.7563 | 84 | 90 | 3.74 |
2 | 3535 | 16 | 17 | Male | 55.2882 | 95 | 77 | 3.75 |
133 | 5494 | 111 | 7 | Male | 54.6913 | 86 | 86 | 3.75 |
36 | 6671 | 30 | 7 | Female | 27.8056 | 71 | 82 | 3.76 |
19 | 5154 | 35 | 5 | Male | 22.1903 | 82 | 95 | 3.76 |
199 | 5712 | 192 | 14 | Male | 22.2697 | 87 | 85 | 3.76 |
262 | 6468 | 513 | 60 | Male | 43.4798 | 99 | 94 | 3.81 |
149 | 4133 | 133 | 14 | Male | 20 | 82 | 94 | 3.81 |
89 | 6614 | 57 | 0 | Male | 45.1116 | 80 | 101 | 3.81 |
54 | 3544 | 32 | 14 | Male | 54.5298 | 81 | 98 | 3.81 |
176 | 4865 | 142 | 35 | Male | 58.3354 | 84 | 103 | 3.82 |
86 | 6314 | 58 | 3 | Male | 16.6927 | 80 | 99 | 3.82 |
77 | 5456 | 48 | 14 | Male | 41.1636 | 80 | 101 | 3.84 |
130 | 5339 | 119 | 7 | Male | 21.8152 | 87 | 82 | 3.85 |
187 | 6180 | 177 | 12 | Male | 20.7201 | 81 | 94 | 3.85 |
226 | 6498 | 270 | 28 | Male | 24.0767 | 82 | 101 | 3.85 |
143 | 1176 | 146 | 17 | Female | 19.729 | 65 | 98 | 3.85 |
42 | 7120 | 39 | 0 | Male | 69.7057 | 84 | 86 | 3.86 |
219 | 5222 | 247 | 30 | Male | 22.5298 | 88 | 85 | 3.87 |
10 | 4356 | 31 | 7 | Male | 21.399 | 86 | 83 | 3.87 |
68 | 4837 | 42 | 10 | Male | 19.6906 | 83 | 88 | 3.88 |
112 | 5879 | 75 | 21 | Male | 25.8453 | 80 | 105 | 3.89 |
265 | 781 | 714 | 15 | Male | 29.8699 | 85 | 85 | 3.89 |
76 | 5289 | 52 | 1 | Male | 48.5722 | 84 | 85 | 3.9 |
102 | 4807 | 64 | 14 | Female | 47.7974 | 74 | 74 | 3.9 |
291 | 3226 | 1123 | 0 | Male | 27.4552 | 88 | 81 | 3.9 |
215 | 3058 | 236 | 28 | Male | 22.2533 | 85 | 88 | 3.91 |
276 | 3226 | 683 | 0 | Male | 27.4552 | 89 | 78 | 3.92 |
145 | 2882 | 141 | 18 | Male | 19.2334 | 84 | 85 | 3.95 |
44 | 7321 | 23 | 0 | Male | 26.0041 | 84 | 83 | 3.97 |
283 | 6059 | 794 | 1 | Female | 16.9801 | 71 | 76 | 3.97 |
174 | 4638 | 140 | 17 | Male | 20.512 | 89 | 78 | 3.97 |
210 | 5386 | 241 | 21 | Male | 20.8761 | 80 | 94 | 3.98 |
285 | 6247 | 616 | 13 | Male | 42.3162 | 85 | 82 | 3.98 |
99 | 3844 | 73 | 9 | Male | 26.1164 | 79 | 94 | 3.98 |
178 | 5009 | 174 | 7 | Male | 24.3806 | 77 | 103 | 3.99 |
58 | 4094 | 50 | 2 | Male | 19.7262 | 79 | 93 | 3.99 |
246 | 5289 | 417 | 1 | Male | 48.5722 | 83 | 83 | 4.02 |
216 | 4342 | 263 | 1 | Male | 44.063 | 79 | 91 | 4.02 |
95 | 7371 | 55 | 1 | Male | 56.7858 | 80 | 88 | 4.04 |
122 | 4902 | 102 | 8 | Male | 16.1424 | 87 | 77 | 4.07 |
259 | 5841 | 415 | 8 | Male | 27.2279 | 82 | 83 | 4.08 |
274 | 2849 | 642 | 0 | Male | 20.0876 | 76 | 98 | 4.09 |
280 | 5222 | 690 | 30 | Male | 22.5298 | 81 | 90 | 4.11 |
320 | 1075 | 2259 | 42 | Female | 27.2772 | 78 | 79 | 4.13 |
108 | 5386 | 78 | 21 | Male | 20.8761 | 78 | 93 | 4.13 |
14 | 4744 | 15 | 25 | Male | 57.566 | 82 | 85 | 4.15 |
75 | 5280 | 83 | 1 | Male | 48.6434 | 78 | 88 | 4.16 |
194 | 4933 | 226 | 0 | Male | 18.4559 | 79 | 86 | 4.16 |
316 | 4638 | 1779 | 17 | Male | 20.512 | 92 | 76 | 4.18 |
195 | 4962 | 210 | 1 | Female | 25.1964 | 71 | 70 | 4.19 |
18 | 5129 | 26 | 1 | Male | 25.0459 | 77 | 89 | 4.2 |
275 | 3032 | 525 | 20 | Male | 16.9391 | 79 | 87 | 4.2 |
261 | 6247 | 389 | 13 | Male | 42.3162 | 82 | 80 | 4.21 |
189 | 2124 | 173 | 30 | Male | 30.7625 | 76 | 106 | 4.23 |
198 | 5668 | 219 | 7 | Male | 40.9227 | 76 | 90 | 4.23 |
11 | 4384 | 35 | 8 | Male | 36.3806 | 76 | 90 | 4.24 |
307 | 5009 | 1537 | 7 | Male | 24.3806 | 76 | 112 | 4.26 |
244 | 5111 | 442 | 7 | Male | 21.6947 | 77 | 86 | 4.28 |
169 | 3237 | 189 | 9 | Male | 49.8508 | 79 | 82 | 4.3 |
297 | 5617 | 1113 | 17 | Male | 19.7864 | 78 | 87 | 4.3 |
301 | 6140 | 1077 | 44 | Female | 21.4209 | 65 | 88 | 4.32 |
327 | 2600 | 3337 | 9 | Male | 43.9398 | 101 | 84 | 4.33 |
128 | 5222 | 93 | 30 | Male | 22.5298 | 77 | 91 | 4.33 |
230 | 6214 | 318 | 0 | Male | 60.3176 | 78 | 82 | 4.34 |
103 | 4892 | 62 | 21 | Male | 22.0397 | 76 | 88 | 4.36 |
319 | 6140 | 1742 | 44 | Female | 21.4209 | 67 | 87 | 4.36 |
227 | 2081 | 185 | 43 | Male | 17.6975 | 77 | 97 | 4.42 |
206 | 7173 | 210 | 4 | Male | 24.9801 | 79 | 78 | 4.44 |
104 | 4962 | 63 | 1 | Female | 25.1964 | 69 | 67 | 4.44 |
120 | 4218 | 82 | 28 | Male | 25.9904 | 74 | 92 | 4.47 |
252 | 5599 | 443 | 21 | Male | 18.7488 | 78 | 80 | 4.48 |
106 | 5222 | 63 | 30 | Male | 22.5298 | 77 | 85 | 4.48 |
164 | 5818 | 125 | 14 | Male | 34.9268 | 72 | 91 | 4.49 |
212 | 6247 | 228 | 13 | Male | 42.3162 | 77 | 80 | 4.49 |
258 | 5811 | 431 | 25 | Male | 80.0328 | 78 | 80 | 4.52 |
222 | 5600 | 232 | 0 | Male | 48.7885 | 75 | 81 | 4.55 |
109 | 5534 | 87 | 14 | Male | 29.2621 | 75 | 82 | 4.55 |
186 | 5782 | 108 | 68 | Female | 19.6715 | 69 | 85 | 4.56 |
69 | 4996 | 51 | 12 | Male | 43.0281 | 77 | 78 | 4.58 |
64 | 4638 | 20 | 17 | Male | 20.512 | 82 | 72 | 4.59 |
32 | 5776 | 26 | 8 | Male | 17.128 | 71 | 88 | 4.6 |
302 | 7061 | 923 | 0 | Male | 36.8816 | 74 | 81 | 4.64 |
303 | 651 | 1491 | 21 | Male | 22.0068 | 71 | 94 | 4.67 |
59 | 4133 | 34 | 14 | Male | 20 | 70 | 88 | 4.69 |
117 | 7221 | 98 | 0 | Male | 63.5044 | 74 | 79 | 4.69 |
37 | 6859 | 27 | 1 | Male | 34.2122 | 74 | 79 | 4.69 |
323 | 3592 | 2569 | 10 | Male | 61.6646 | 76 | 93 | 4.72 |
179 | 5111 | 177 | 7 | Male | 21.6947 | 72 | 81 | 4.73 |
287 | 626 | 870 | 55 | Male | 19.7536 | 80 | 85 | 4.75 |
7 | 3807 | 37 | 5 | Male | 24.6762 | 74 | 77 | 4.76 |
136 | 6135 | 96 | 18 | Male | 26.5626 | 66 | 105 | 4.76 |
184 | 5599 | 148 | 21 | Male | 18.7488 | 72 | 81 | 4.8 |
26 | 5668 | 27 | 7 | Male | 40.9227 | 72 | 79 | 4.81 |
286 | 405 | 986 | 0 | Male | 21.4702 | 66 | 116 | 4.82 |
126 | 5111 | 107 | 7 | Male | 21.6947 | 71 | 80 | 4.82 |
193 | 4775 | 180 | 28 | Male | 53.5551 | 70 | 86 | 4.83 |
123 | 4933 | 134 | 0 | Male | 18.4559 | 69 | 83 | 4.85 |
87 | 6340 | 71 | 0 | Male | 19.3238 | 76 | 72 | 4.85 |
98 | 3645 | 43 | 45 | Male | 27.4935 | 72 | 90 | 4.86 |
309 | 5085 | 1512 | 2 | Male | 49.0267 | 75 | 75 | 4.91 |
118 | 2453 | 120 | 10 | Male | 37.2758 | 63 | 99 | 4.94 |
116 | 7173 | 84 | 4 | Male | 24.9801 | 72 | 75 | 4.94 |
142 | 6834 | 123 | 0 | Male | 30.7488 | 72 | 75 | 4.94 |
85 | 6180 | 59 | 12 | Male | 20.7201 | 67 | 84 | 4.96 |
148 | 3913 | 96 | 42 | Female | 23.9233 | 56 | 80 | 4.96 |
47 | 2600 | 3333 | 9 | Male | 43.9398 | 86 | 80 | 4.97 |
6 | 3790 | 13 | 3 | Male | 57.0623 | 76 | 69 | 4.99 |
113 | 5893 | 71 | 21 | Male | 22.8118 | 65 | 90 | 4.99 |
200 | 5893 | 200 | 21 | Male | 22.8118 | 65 | 89 | 5.01 |
70 | 5009 | 50 | 7 | Male | 24.3806 | 61 | 104 | 5.05 |
146 | 3051 | 131 | 13 | Male | 37.2403 | 68 | 79 | 5.05 |
231 | 7034 | 280 | 60 | Male | 23.1376 | 78 | 80 | 5.07 |
288 | 1075 | 907 | 42 | Female | 27.2772 | 63 | 64 | 5.12 |
266 | 1048 | 576 | 94 | Male | 20.115 | 91 | 96 | 5.14 |
269 | 1611 | 511 | 60 | Male | 23.2799 | 69 | 107 | 5.16 |
314 | 3768 | 1916 | 0 | Male | 19.1102 | 69 | 80 | 5.16 |
237 | 3226 | 444 | 0 | Male | 27.4552 | 76 | 64 | 5.21 |
134 | 5896 | 126 | 4 | Female | 26.8775 | 50 | 74 | 5.25 |
88 | 6564 | 69 | 0 | Male | 34.4997 | 67 | 74 | 5.26 |
218 | 5085 | 269 | 2 | Male | 49.0267 | 65 | 77 | 5.26 |
5 | 3728 | 19 | 6 | Male | 30.1273 | 67 | 73 | 5.3 |
166 | 6664 | 164 | 2 | Male | 24.7337 | 66 | 73 | 5.34 |
110 | 5712 | 88 | 14 | Male | 22.2697 | 70 | 68 | 5.36 |
138 | 6214 | 112 | 0 | Male | 60.3176 | 65 | 74 | 5.37 |
125 | 5085 | 117 | 2 | Male | 49.0267 | 67 | 71 | 5.38 |
97 | 3058 | 56 | 28 | Male | 22.2533 | 65 | 75 | 5.45 |
238 | 3467 | 333 | 42 | Male | 25.3936 | 68 | 74 | 5.46 |
49 | 3237 | 65 | 9 | Male | 49.8508 | 67 | 67 | 5.55 |
325 | 651 | 3412 | 21 | Male | 22.0068 | 68 | 92 | 5.62 |
328 | 3835 | 4933 | 14 | Male | 25.9932 | 91 | 88 | 5.69 |
4 | 3592 | 13 | 10 | Male | 61.6646 | 59 | 73 | 5.77 |
268 | 1493 | 684 | 60 | Male | 17.8042 | 66 | 75 | 5.83 |
144 | 2849 | 151 | 0 | Male | 20.0876 | 51 | 86 | 5.89 |
96 | 2569 | 49 | 35 | Male | 18.7159 | 50 | 101 | 5.94 |
232 | 1493 | 453 | 60 | Male | 17.8042 | 59 | 81 | 6.03 |
310 | 1939 | 1926 | 130 | Male | 28.2738 | 95 | 108 | 6.41 |
208 | 3467 | 186 | 42 | Male | 25.3936 | 53 | 69 | 6.45 |
167 | 1048 | 85 | 94 | Male | 20.115 | 63 | 82 | 6.51 |
271 | 1939 | 562 | 130 | Male | 28.2738 | 85 | 111 | 6.51 |
321 | 1939 | 3111 | 130 | Male | 28.2738 | 88 | 111 | 6.93 |
234 | 1939 | 295 | 130 | Male | 28.2738 | 67 | 117 | 7.17 |
326 | 1939 | 3864 | 130 | Male | 28.2738 | 88 | 105 | 7.22 |
329 | 2773 | 7631 | 42 | Male | 6.51335 | 88 | 103 | 7.96 |
311 | 2662 | 1569 | 180 | Male | 28.0821 | 90 | 101 | 8.24 |
331 | 5964 | 11038 | 0 | Male | 12.8363 | 71 | 73 | 11.23 |
330 | 5142 | 11628 | 57 | Male | 16.4326 | 101 | 95 | 11.25 |
305 | 2638 | 1093 | 255 | Male | 16.5613 | 78 | 84 | 11.27 |
257 | 5804 | 354 | 2 | Female | 42.24 | 122 | 105 | nan |