Missing Values using KNN

KNN adalah algoritma yang berguna untuk mencocokkan suatu titik dengan tetangga terdekatnya dalam ruang multi-dimensi. Ini dapat digunakan untuk data yang kontinu, diskrit, ordinal, dan kategoris yang membuatnya sangat berguna untuk menangani semua jenis data yang hilang.

Asumsi di balik menggunakan KNN untuk nilai yang hilang adalah bahwa nilai poin dapat didekati dengan nilai dari poin yang paling dekat dengannya, berdasarkan pada variabel lain.

Mari kita simpan contoh sebelumnya dan tambahkan variabel lain, penghasilan orang tersebut. Sekarang kami memiliki tiga variabel, jenis kelamin, pendapatan dan tingkat depresi yang memiliki nilai yang hilang. Kami kemudian berasumsi bahwa orang-orang dengan pendapatan yang sama dan jenis kelamin yang sama cenderung memiliki tingkat depresi yang sama. Untuk nilai yang hilang, kita akan melihat jenis kelamin orang tersebut, pendapatannya, mencari k tetangga terdekatnya dan mendapatkan tingkat depresi mereka. Kita kemudian dapat memperkirakan tingkat depresi orang yang kita inginkan.

Kalibrasi Parameter KNN

Jumlah tetangga yang harus dicari

Mengambil k rendah akan meningkatkan pengaruh kebisingan dan hasilnya akan kurang digeneralisasikan. Di sisi lain, mengambil k tinggi akan cenderung mengaburkan efek lokal yang persis apa yang kita cari. Juga disarankan untuk mengambil k yang aneh untuk kelas biner untuk menghindari ikatan.

Metode agregasi untuk digunakan

Di sini kita memungkinkan untuk mean aritmatika, median dan mode untuk variabel numerik dan mode untuk yang kategorikal

Normalisasi data

Ini adalah metode yang memungkinkan setiap atribut memberikan pengaruh yang sama dalam mengidentifikasi tetangga saat menghitung jenis jarak tertentu seperti yang Euclidean. Anda harus menormalkan data Anda ketika skala tidak memiliki arti dan / atau Anda memiliki skala tidak konsisten seperti sentimeter dan meter. Ini menyiratkan pengetahuan sebelumnya tentang data untuk mengetahui mana yang lebih penting. Algoritma secara otomatis menormalkan data ketika variabel numerik dan kategorikal disediakan.

Atribut numerik jarak

Di antara berbagai metrik jarak yang tersedia, kami akan fokus pada yang utama, Euclidean dan Manhattan. Euclidean adalah ukuran jarak yang baik untuk digunakan jika variabel input bertipe sama (mis. Semua lebar dan tinggi yang diukur). Jarak Manhattan adalah ukuran yang baik untuk digunakan jika variabel input tidak dalam jenis yang sama (seperti usia, tinggi, dll ...).

Atribut kategorikal jarak

tanpa transformasi sebelumnya, jarak yang berlaku terkait dengan frekuensi dan kesamaan. Atribut kategorikal hampir sama dengan nominal karena dengan tipe ini akan dinormalisasikan menjadi numerik atau angka untuk bisa dirukur jaraknya.

Contoh Datanya sebagai berikut

Pertama import data terlebih dahulu di code untuk bisa ditampilkan.Pada Contoh Berikut saya mengambil data yang terkena HIV,saya mengambil data tersebut dari internet.

import pandas as pd
import math as mt
from sklearn.preprocessing import LabelEncoder

data = pd.read_csv('HIVaids.csv', delimiter=';', decimal=',')
#encode fitur tipe biner
X = data.iloc[:,:].values
labelEncode_X = LabelEncoder()
X[:,4] = labelEncode_X.fit_transform(X[:,4])
df = pd.DataFrame(data)
df.style.highlight_null(null_color='red').hide_index()

Berikut Tampilan Data yang ada data kosong (null) missing values untuk bisa di knn

no income days delay gender age hiv emergency
1 3358 30 4 Male 20.6708 87 89
2 3535 16 17 Male 55.2882 95 77
3 3547 40 1 Male 55.9151 95 116
4 3592 13 10 Male 61.6646 59 73
5 3728 19 6 Male 30.1273 67 73
6 3790 13 3 Male 57.0623 76 69
7 3807 37 5 Male 24.6762 74 77
8 3808 31 7 Male 28.2683 91 110
9 4253 40 3 Male 22.6037 115 110
10 4356 31 7 Male 21.399 86 83
11 4384 35 8 Male 36.3806 76 90
12 4542 22 11 Female 21.9576 71 89
13 4705 18 1 Female 21.6838 127 109
14 4744 15 25 Male 57.566 82 85
15 4802 36 0 Male 62.475 88 97
16 4941 46 4 Female 19.0144 69 88
17 4983 33 5 Male 38.3929 102 117
18 5129 26 1 Male 25.0459 77 89
19 5154 35 5 Male 22.1903 82 95
20 5162 33 1 Male 25.0185 118 101
21 5174 38 4 Female 37.2704 87 99
22 5208 31 8 Female 21.3771 97 90
23 5253 29 1 Male 33.1335 104 105
24 5298 30 3 Male 22.9569 87 86
25 5640 34 7 Male 25.9986 93 113
26 5668 27 7 Male 40.9227 72 79
27 5680 17 1 Male 27.7563 84 90
28 5699 26 1 Female 34.2231 95 108
29 5713 36 8 Male 16.2683 89 97
30 5736 18 9 Male 16.1478 89 86
31 5754 36 1 Male 16.3368 87 86
32 5776 26 8 Male 17.128 71 88
33 6122 29 1 Male 56.2108 95 103
34 6163 21 1 Male 19.3593 112 106
35 6179 22 2 Male 38.0123 89 95
36 6671 30 7 Female 27.8056 71 82
37 6859 27 1 Male 34.2122 74 79
38 6870 22 0 Male 42.4832 84 95
39 6914 43 0 Male 61.5222 85 90
40 6937 18 0 Female 21.191 94 81
41 6977 30 1 Male 36.2108 97 94
42 7120 39 0 Male 69.7057 84 86
43 7309 31 0 Female 50.6667 85 95
44 7321 23 0 Male 26.0041 84 83
45 7548 31 0 Male 24.3669 108 106
46 2364 41 14 Male 25.8097 84 94
47 2600 3333 9 Male 43.9398 86 80
48 2761 40 3 Female 24.3696 98 112
49 3237 65 9 Male 49.8508 67 67
50 3277 51 1 Male 37.4702 104 96
51 3346 44 18 Female 57.2758 79 85
52 3359 59 9 Female 56.8953 84 91
53 3373 39 28 Female 26.308 87 91
54 3544 32 14 Male 54.5298 81 98
55 3655 57 5 Female 21.9055 90 103
56 3762 48 6 Male 20.3559 85 93
57 3919 58 1 Male 30.3655 99 95
58 4094 50 2 Male 19.7262 79 93
59 4133 34 14 Male 20 70 88
60 4183 42 3 Male 26.2341 98 116
61 4189 69 4 Female 29.462 75 86
62 4315 63 0 Male 38.141 107 130
63 4482 58 14 Female 18.2341 86 103
64 4638 20 17 Male 20.512 82 72
65 4678 63 7 Male 46.6448 96 95
66 4696 54 4 Male 46.9569 101 112
67 4755 24 18 Male 27.5127 105 102
68 4837 42 10 Male 19.6906 83 88
69 4996 51 12 Male 43.0281 77 78
70 5009 50 7 Male 24.3806 61 104
71 5014 46 7 Female 23.7618 75 90
72 5192 60 1 Male 58.6283 87 97
73 5204 71 0 Male 59.0746 97 107
74 5238 44 3 Male 45.1006 99 103
75 5280 83 1 Male 48.6434 78 88
76 5289 52 1 Male 48.5722 84 85
77 5456 48 14 Male 41.1636 80 101
78 5458 44 14 Male 34.4778 84 95
79 5474 65 2 Female 28.6598 95 86
80 5568 64 1 Female 51.9918 75 79
81 5580 56 7 Male 17.7933 86 95
82 5581 65 2 Male 26.3053 85 95
83 5628 51 3 Female 30.2642 81 85
84 6154 43 5 Female 22.6064 74 80
85 6180 59 12 Male 20.7201 67 84
86 6314 58 3 Male 16.6927 80 99
87 6340 71 0 Male 19.3238 76 72
88 6564 69 0 Male 34.4997 67 74
89 6614 57 0 Male 45.1116 80 101
90 6686 44 14 Female 38.3491 90 100
91 6795 55 0 Male 30.7159 87 104
92 7080 64 5 Female 76.6598 76 106
93 7084 54 2 Male 36.5722 87 93
94 7271 55 0 Male 41.7659 100 95
95 7371 55 1 Male 56.7858 80 88
96 2569 49 35 Male 18.7159 50 101
97 3058 56 28 Male 22.2533 65 75
98 3645 43 45 Male 27.4935 72 90
99 3844 73 9 Male 26.1164 79 94
100 4725 124 10 Male 32.9172 93 97
101 4744 65 25 Male 57.566 105 119
102 4807 64 14 Female 47.7974 74 74
103 4892 62 21 Male 22.0397 76 88
104 4962 63 1 Female 25.1964 69 67
105 5125 78 12 Male 17.5387 94 118
106 5222 63 30 Male 22.5298 77 85
107 5253 86 1 Male 33.1335 106 128
108 5386 78 21 Male 20.8761 78 93
109 5534 87 14 Male 29.2621 75 82
110 5712 88 14 Male 22.2697 70 68
111 5837 82 1 Female 33.3087 82 110
112 5879 75 21 Male 25.8453 80 105
113 5893 71 21 Male 22.8118 65 90
114 5916 84 0 Female 26.8556 93 73
115 6410 80 14 Male 32.1725 85 98
116 7173 84 4 Male 24.9801 72 75
117 7221 98 0 Male 63.5044 74 79
118 2453 120 10 Male 37.2758 63 99
119 2653 97 28 Male 30.0068 93 112
120 4218 82 28 Male 25.9904 74 92
121 4542 121 11 Female 21.9576 86 114
122 4902 102 8 Male 16.1424 87 77
123 4933 134 0 Male 18.4559 69 83
124 4941 131 4 Female 19.0144 96 96
125 5085 117 2 Male 49.0267 67 71
126 5111 107 7 Male 21.6947 71 80
127 5154 120 5 Male 22.1903 89 109
128 5222 93 30 Male 22.5298 77 91
129 5298 107 3 Male 22.9569 117 112
130 5339 119 7 Male 21.8152 87 82
131 5387 109 12 Male 21.7988 85 112
132 5414 105 10 Female 40.2765 93 104
133 5494 111 7 Male 54.6913 86 86
134 5896 126 4 Female 26.8775 50 74
135 5901 115 7 Male 22.1739 112 116
136 6135 96 18 Male 26.5626 66 105
137 6173 125 4 Male 35.3046 94 97
138 6214 112 0 Male 60.3176 65 74
139 6253 128 0 Female 46.4038 104 112
140 6433 120 4 Male 23.8604 100 103
141 6665 119 3 Female 23.0171 106 94
142 6834 123 0 Male 30.7488 72 75
143 1176 146 17 Female 19.729 65 98
144 2849 151 0 Male 20.0876 51 86
145 2882 141 18 Male 19.2334 84 85
146 3051 131 13 Male 37.2403 68 79
147 3728 151 6 Male 30.1273 96 105
148 3913 96 42 Female 23.9233 56 80
149 4133 133 14 Male 20 82 94
150 4661 135 17 Female 30.8419 84 93
151 4678 143 7 Male 46.6448 98 107
152 4696 150 4 Male 46.9569 120 120
153 4705 146 1 Female 21.6838 133 111
154 4802 142 0 Male 62.475 101 117
155 4807 139 14 Female 47.7974 80 78
156 4983 146 5 Male 38.3929 107 123
157 5014 151 7 Female 23.7618 97 110
158 5162 144 1 Male 25.0185 130 118
159 5238 150 3 Male 45.1006 117 126
160 5642 162 0 Male 65.87 89 103
161 5699 138 1 Female 34.2231 110 107
162 5713 144 8 Male 16.2683 100 99
163 5804 159 2 Female 28.8515 102 107
164 5818 125 14 Male 34.9268 72 91
165 6314 140 3 Male 16.6927 87 96
166 6664 164 2 Male 24.7337 66 73
167 1048 85 94 Male 20.115 63 82
168 1085 159 11 Male 30.7105 103 97
169 3237 189 9 Male 49.8508 79 82
170 3358 175 4 Male 20.6708 97 97
171 3808 165 7 Male 28.2683 94 111
172 4094 177 2 Male 19.7262 89 102
173 4253 175 3 Male 22.6037 114 118
174 4638 140 17 Male 20.512 89 78
175 4755 128 18 Male 27.5127 105 109
176 4865 142 35 Male 58.3354 84 103
177 4892 148 21 Male 22.0397 106 110
178 5009 174 7 Male 24.3806 77 103
179 5111 177 7 Male 21.6947 72 81
180 5125 173 12 Male 17.5387 106 119
181 5192 179 1 Male 58.6283 93 105
182 5505 171 1 Male 65.4784 95 93
183 5581 176 2 Male 26.3053 96 110
184 5599 148 21 Male 18.7488 72 81
185 5680 184 1 Male 27.7563 84 90
186 5782 108 68 Female 19.6715 69 85
187 6180 177 12 Male 20.7201 81 94
188 6671 184 7 Female 27.8056 91 92
189 2124 173 30 Male 30.7625 76 106
190 2646 187 14 Male 22.9158 97 97
191 2790 211 0 Male 48.8049 89 99
192 4189 202 4 Female 29.462 81 90
193 4775 180 28 Male 53.5551 70 86
194 4933 226 0 Male 18.4559 79 86
195 4962 210 1 Female 25.1964 71 70
196 5208 193 8 Female 21.3771 133 111
197 5456 193 14 Male 41.1636 87 110
198 5668 219 7 Male 40.9227 76 90
199 5712 192 14 Male 22.2697 87 85
200 5893 200 21 Male 22.8118 65 89
201 5916 205 0 Female 26.8556 92 76
202 6122 212 1 Male 56.2108 109 117
203 6136 216 1 Male 32.7912 92 89
204 6175 278 1 Male 51.1704 99 98
205 6228 174 3 Female 31.5537 114 108
206 7173 210 4 Male 24.9801 79 78
207 1176 216 17 Female 19.729 74 100
208 3467 186 42 Male 25.3936 53 69
209 4744 217 25 Male 57.566 108 118
210 5386 241 21 Male 20.8761 80 94
211 5837 242 1 Female 33.3087 93 105
212 6247 228 13 Male 42.3162 77 80
213 1892 276 2 Male 21.7796 87 107
214 2882 262 18 Male 19.2334 94 90
215 3058 236 28 Male 22.2533 85 88
216 4342 263 1 Male 44.063 79 91
217 4865 240 35 Male 58.3354 93 105
218 5085 269 2 Male 49.0267 65 77
219 5222 247 30 Male 22.5298 88 85
220 5339 271 7 Male 21.8152 94 89
221 5474 280 2 Female 28.6598 99 91
222 5600 232 0 Male 48.7885 75 81
223 2826 290 14 Male 23.2334 94 108
224 4725 286 10 Male 32.9172 105 94
225 5204 299 0 Male 59.0746 99 105
226 6498 270 28 Male 24.0767 82 101
227 2081 185 43 Male 17.6975 77 97
228 4678 340 7 Male 46.6448 108 119
229 5397 328 0 Female 62.7981 121 108
230 6214 318 0 Male 60.3176 78 82
231 7034 280 60 Male 23.1376 78 80
232 1493 453 60 Male 17.8042 59 81
233 1836 375 1 Male 47.0554 101 108
234 1939 295 130 Male 28.2738 67 117
235 2646 438 14 Male 22.9158 98 94
236 2653 352 28 Male 30.0068 105 126
237 3226 444 0 Male 27.4552 76 64
238 3467 333 42 Male 25.3936 68 74
239 4342 432 1 Male 44.063 92 107
240 4542 431 11 Female 21.9576 98 114
241 4661 374 17 Female 30.8419 93 95
242 4902 397 8 Male 16.1424 92 86
243 4983 398 5 Male 38.3929 121 132
244 5111 442 7 Male 21.6947 77 86
245 5125 510 12 Male 17.5387 112 125
246 5289 417 1 Male 48.5722 83 83
247 5386 436 21 Male 20.8761 90 103
248 5387 480 12 Male 21.7988 94 116
249 5505 527 1 Male 65.4784 104 87
250 5580 369 7 Male 17.7933 96 107
251 5581 378 2 Male 26.3053 95 95
252 5599 443 21 Male 18.7488 78 80
253 5668 390 7 Male 40.9227 92 92
254 5680 403 1 Male 27.7563 94 93
255 5712 365 14 Male 22.2697 98 86
256 5772 412 35 Male 26.2587 102 104
257 5804 354 2 Female nan 122 105
258 5811 431 25 Male 80.0328 78 80
259 5841 415 8 Male 27.2279 82 83
260 6226 438 0 Male 36.8022 84 92
261 6247 389 13 Male 42.3162 82 80
262 6468 513 60 Male 43.4798 99 94
263 6614 362 0 Male 45.1116 88 106
264 6665 368 3 Female 23.0171 100 92
265 781 714 15 Male 29.8699 85 85
266 1048 576 94 Male 20.115 91 96
267 1157 810 23 Male 17.3881 97 84
268 1493 684 60 Male 17.8042 66 75
269 1611 511 60 Male 23.2799 69 107
270 1624 604 1 Male 19.5619 97 85
271 1939 562 130 Male 28.2738 85 111
272 2498 615 0 Female 17.4292 86 113
273 2826 636 14 Male 23.2334 111 101
274 2849 642 0 Male 20.0876 76 98
275 3032 525 20 Male 16.9391 79 87
276 3226 683 0 Male 27.4552 89 78
277 4218 814 28 Male 25.9904 99 96
278 4807 532 14 Female 47.7974 84 82
279 5014 637 7 Female 23.7618 101 114
280 5222 690 30 Male 22.5298 81 90
281 5253 591 1 Male 33.1335 114 124
282 5628 609 3 Female 30.2642 89 78
283 6059 794 1 Female 16.9801 71 76
284 6228 662 3 Female 31.5537 128 111
285 6247 616 13 Male 42.3162 85 82
286 405 986 0 Male 21.4702 66 116
287 626 870 55 Male 19.7536 80 85
288 1075 907 42 Female 27.2772 63 64
289 2849 1040 0 Male 20.0876 91 103
290 3032 884 20 Male 16.9391 87 93
291 3226 1123 0 Male 27.4552 88 81
292 4864 936 0 Female 53.9767 119 131
293 5474 1100 2 Female 28.6598 94 88
294 5568 1114 1 Female 51.9918 81 82
295 5580 1087 7 Male 17.7933 106 98
296 5581 1113 2 Male 26.3053 99 96
297 5617 1113 17 Male 19.7864 78 87
298 5642 1143 0 Male 65.87 104 109
299 5713 1016 8 Male 16.2683 126 106
300 5837 962 1 Female 33.3087 109 110
301 6140 1077 44 Female 21.4209 65 88
302 7061 923 0 Male 36.8816 74 81
303 651 1491 21 Male 22.0068 71 94
304 2527 1294 0 Male 16.9172 93 104
305 2638 1093 255 Male 16.5613 78 84
306 4865 1363 35 Male 58.3354 88 104
307 5009 1537 7 Male 24.3806 76 112
308 5014 1523 7 Female 23.7618 105 114
309 5085 1512 2 Male 49.0267 75 75
310 1939 1926 130 Male 28.2738 95 108
311 2662 1569 180 Male 28.0821 90 101
312 2826 1809 14 Male 23.2334 104 108
313 2882 1716 18 Male 19.2334 100 103
314 3768 1916 0 Male 19.1102 69 80
315 4356 2000 7 Male 21.399 104 91
316 4638 1779 17 Male 20.512 92 76
317 4696 1769 4 Male 46.9569 105 124
318 4744 1743 25 Male 57.566 97 118
319 6140 1742 44 Female 21.4209 67 87
320 1075 2259 42 Female 27.2772 78 79
321 1939 3111 130 Male 28.2738 88 111
322 2653 2191 28 Male 30.0068 117 129
323 3592 2569 10 Male 61.6646 76 93
324 3808 2434 7 Male 28.2683 105 111
325 651 3412 21 Male 22.0068 68 92
326 1939 3864 130 Male 28.2738 88 105
327 2600 3337 9 Male 43.9398 101 84
328 3835 4933 14 Male 25.9932 91 88
329 2773 7631 42 Male 6.51335 88 103
330 5142 11628 57 Male 16.4326 101 95
331 5964 11038 0 Male 12.8363 71 73

Selanjutnya kita mengimplementasikan rumus jarak ke dalam bentuk fungsi python. yaitu: eulidianDistance() dengan fungsi jarak tipe binary distanceSimetris().

def Zscore(x,mean,std):
    top = x - mean
    if top==0:
        return top
    else:
        return round(top / std, 2)

#menghitung jarak tipe numerikal
def euclidianDistance(x,y):
    dis = 0
    for i in range(len(x)):
        dis += (x[i] - y[i]) ** 2
    return round(mt.sqrt(dis),2)

#Menghitung jarak tipe binary
def distanceSimetris(x,y):
    q=r=s=t=0
    for i in range(len(x)):
        if x[i]==1 and y[i]==1:
            q+=1
        elif x[i]==1 and y[i]==0:
            r+=1
        elif x[i]==0 and y[i]==1:
            s+=1
        elif x[i]==0 and y[i]==0:
            t+=1
    return ((r+s)/(q+r+s+t))

def normalisasi(num, col_x): 
    return Zscore(num, pd.Series(data[col_x].values).mean(), pd.Series(data[col_x].values).std())

Kemudian dari dataset tersebut, kita lakukan pengecekan dengan mencari baris yang missing values,.

c_j = 0
for j in df['age'].isna():
    if j == True:
        col_missing = c_j
    c_j+=1

Pada langkah berikut, kita lakukan perhitungan jarak pada data yang missing dengan seluruh tetangganya dan menampungnya pada dapat dictionary yang ada.

missing_data = df.iloc[col_missing, [2,3,6,7]].values
missing_normal = [normalisasi(missing_data[0],data.columns[2]), normalisasi(missing_data[1],data.columns[3]), normalisasi(missing_data[2],data.columns[6]), normalisasi(missing_data[3],data.columns[7])]

for i in range(len(data[data.columns[0]])):
    if i==col_missing:
        continue;
    select_data = df.iloc[i, [2,3,6,7]].values
    normal_data = [normalisasi(select_data[0],data.columns[2]), normalisasi(select_data[1],data.columns[3]), normalisasi(select_data[2],data.columns[6]), normalisasi(select_data[3],data.columns[7])]
    data.loc[i, 'jarak'] =  euclidianDistance(missing_normal,normal_data) + distanceSimetris([X[col_missing, 4]],[X[i, 4]])

Kemudian kita urutkan data tersebut berdasarkan jarak dari yang terkecil sampai ke terbesar. Selanjutnya kita mengisi data yang hilang dengan mengambil rata-rata dari 2 tetangga terdekat.

df = pd.DataFrame(data)
df.sort_values(by='jarak', axis=0, ascending=True, inplace=True) 
df.iloc[-1, [5]] = round(df.iloc[0:2,5].mean(), 2)
df.style.hide_index()

Berikut merupakan tampilan dari data yang telah di urutkan. pada baris terakhir telihat bahwa kolom age sudah terisi dengan angka sebagai berikut

no income days delay gender age hiv emergency jarak
229 5397 328 0 Female 62.7981 121 108 0.25
13 4705 18 1 Female 21.6838 127 109 0.53
205 6228 174 3 Female 31.5537 114 108 0.6
284 6228 662 3 Female 31.5537 128 111 0.64
161 5699 138 1 Female 34.2231 110 107 0.84
153 4705 146 1 Female 21.6838 133 111 0.86
196 5208 193 8 Female 21.3771 133 111 0.88
300 5837 962 1 Female 33.3087 109 110 1.07
139 6253 128 0 Female 46.4038 104 112 1.31
141 6665 119 3 Female 23.0171 106 94 1.33
163 5804 159 2 Female 28.8515 102 107 1.35
20 5162 33 1 Male 25.0185 118 101 1.48
279 5014 637 7 Female 23.7618 101 114 1.56
129 5298 107 3 Male 22.9569 117 112 1.64
9 4253 40 3 Male 22.6037 115 110 1.66
308 5014 1523 7 Female 23.7618 105 114 1.67
299 5713 1016 8 Male 16.2683 126 106 1.68
48 2761 40 3 Female 24.3696 98 112 1.69
157 5014 151 7 Female 23.7618 97 110 1.72
264 6665 368 3 Female 23.0171 100 92 1.73
34 6163 21 1 Male 19.3593 112 106 1.73
240 4542 431 11 Female 21.9576 98 114 1.75
221 5474 280 2 Female 28.6598 99 91 1.82
28 5699 26 1 Female 34.2231 95 108 1.83
124 4941 131 4 Female 19.0144 96 96 1.85
211 5837 242 1 Female 33.3087 93 105 1.92
292 4864 936 0 Female 53.9767 119 131 1.93
273 2826 636 14 Male 23.2334 111 101 1.94
132 5414 105 10 Female 40.2765 93 104 1.96
45 7548 31 0 Male 24.3669 108 106 1.98
22 5208 31 8 Female 21.3771 97 90 2
135 5901 115 7 Male 22.1739 112 116 2.07
173 4253 175 3 Male 22.6037 114 118 2.08
158 5162 144 1 Male 25.0185 130 118 2.09
152 4696 150 4 Male 46.9569 120 120 2.1
241 4661 374 17 Female 30.8419 93 95 2.13
55 3655 57 5 Female 21.9055 90 103 2.14
202 6122 212 1 Male 56.2108 109 117 2.22
90 6686 44 14 Female 38.3491 90 100 2.22
23 5253 29 1 Male 33.1335 104 105 2.23
79 5474 65 2 Female 28.6598 95 86 2.26
188 6671 184 7 Female 27.8056 91 92 2.26
293 5474 1100 2 Female 28.6598 94 88 2.3
67 4755 24 18 Male 27.5127 105 102 2.33
175 4755 128 18 Male 27.5127 105 109 2.33
177 4892 148 21 Male 22.0397 106 110 2.35
295 5580 1087 7 Male 17.7933 106 98 2.35
50 3277 51 1 Male 37.4702 104 96 2.38
21 5174 38 4 Female 37.2704 87 99 2.38
228 4678 340 7 Male 46.6448 108 119 2.38
298 5642 1143 0 Male 65.87 104 109 2.41
224 4725 286 10 Male 32.9172 105 94 2.41
233 1836 375 1 Male 47.0554 101 108 2.41
168 1085 159 11 Male 30.7105 103 97 2.43
63 4482 58 14 Female 18.2341 86 103 2.44
272 2498 615 0 Female 17.4292 86 113 2.46
140 6433 120 4 Male 23.8604 100 103 2.48
281 5253 591 1 Male 33.1335 114 124 2.48
121 4542 121 11 Female 21.9576 86 114 2.5
66 4696 54 4 Male 46.9569 101 112 2.5
180 5125 173 12 Male 17.5387 106 119 2.51
225 5204 299 0 Male 59.0746 99 105 2.52
40 6937 18 0 Female 21.191 94 81 2.53
162 5713 144 8 Male 16.2683 100 99 2.55
159 5238 150 3 Male 45.1006 117 126 2.55
74 5238 44 3 Male 45.1006 99 103 2.55
43 7309 31 0 Female 50.6667 85 95 2.57
209 4744 217 25 Male 57.566 108 118 2.59
204 6175 278 1 Male 51.1704 99 98 2.6
17 4983 33 5 Male 38.3929 102 117 2.61
151 4678 143 7 Male 46.6448 98 107 2.62
245 5125 510 12 Male 17.5387 112 125 2.63
156 4983 146 5 Male 38.3929 107 123 2.64
94 7271 55 0 Male 41.7659 100 95 2.65
154 4802 142 0 Male 62.475 101 117 2.65
111 5837 82 1 Female 33.3087 82 110 2.69
73 5204 71 0 Male 59.0746 97 107 2.69
57 3919 58 1 Male 30.3655 99 95 2.7
150 4661 135 17 Female 30.8419 84 93 2.72
52 3359 59 9 Female 56.8953 84 91 2.72
53 3373 39 28 Female 26.308 87 91 2.73
250 5580 369 7 Male 17.7933 96 107 2.74
147 3728 151 6 Male 30.1273 96 105 2.74
249 5505 527 1 Male 65.4784 104 87 2.75
183 5581 176 2 Male 26.3053 96 110 2.76
170 3358 175 4 Male 20.6708 97 97 2.76
101 4744 65 25 Male 57.566 105 119 2.77
296 5581 1113 2 Male 26.3053 99 96 2.78
60 4183 42 3 Male 26.2341 98 116 2.8
312 2826 1809 14 Male 23.2334 104 108 2.82
190 2646 187 14 Male 22.9158 97 97 2.82
33 6122 29 1 Male 56.2108 95 103 2.82
235 2646 438 14 Male 22.9158 98 94 2.83
256 5772 412 35 Male 26.2587 102 104 2.84
41 6977 30 1 Male 36.2108 97 94 2.86
201 5916 205 0 Female 26.8556 92 76 2.87
65 4678 63 7 Male 46.6448 96 95 2.89
282 5628 609 3 Female 30.2642 89 78 2.91
192 4189 202 4 Female 29.462 81 90 2.91
223 2826 290 14 Male 23.2334 94 108 2.92
171 3808 165 7 Male 28.2683 94 111 2.92
251 5581 378 2 Male 26.3053 95 95 2.93
243 4983 398 5 Male 38.3929 121 132 2.93
181 5192 179 1 Male 58.6283 93 105 2.93
137 6173 125 4 Male 35.3046 94 97 2.95
107 5253 86 1 Male 33.1335 106 128 2.97
277 4218 814 28 Male 25.9904 99 96 2.97
114 5916 84 0 Female 26.8556 93 73 2.98
3 3547 40 1 Male 55.9151 95 116 2.98
313 2882 1716 18 Male 19.2334 100 103 2.99
182 5505 171 1 Male 65.4784 95 93 2.99
239 4342 432 1 Male 44.063 92 107 3
278 4807 532 14 Female 47.7974 84 82 3.03
25 5640 34 7 Male 25.9986 93 113 3.03
100 4725 124 10 Male 32.9172 93 97 3.04
254 5680 403 1 Male 27.7563 94 93 3.04
248 5387 480 12 Male 21.7988 94 116 3.05
62 4315 63 0 Male 38.141 107 130 3.05
92 7080 64 5 Female 76.6598 76 106 3.05
83 5628 51 3 Female 30.2642 81 85 3.07
304 2527 1294 0 Male 16.9172 93 104 3.09
8 3808 31 7 Male 28.2683 91 110 3.11
105 5125 78 12 Male 17.5387 94 118 3.12
236 2653 352 28 Male 30.0068 105 126 3.13
315 4356 2000 7 Male 21.399 104 91 3.13
289 2849 1040 0 Male 20.0876 91 103 3.14
255 5712 365 14 Male 22.2697 98 86 3.14
317 4696 1769 4 Male 46.9569 105 124 3.16
220 5339 271 7 Male 21.8152 94 89 3.18
160 5642 162 0 Male 65.87 89 103 3.19
324 3808 2434 7 Male 28.2683 105 111 3.2
172 4094 177 2 Male 19.7262 89 102 3.2
270 1624 604 1 Male 19.5619 97 85 3.2
253 5668 390 7 Male 40.9227 92 92 3.2
127 5154 120 5 Male 22.1903 89 109 3.21
214 2882 262 18 Male 19.2334 94 90 3.22
119 2653 97 28 Male 30.0068 93 112 3.23
191 2790 211 0 Male 48.8049 89 99 3.23
294 5568 1114 1 Female 51.9918 81 82 3.23
51 3346 44 18 Female 57.2758 79 85 3.25
263 6614 362 0 Male 45.1116 88 106 3.25
207 1176 216 17 Female 19.729 74 100 3.25
247 5386 436 21 Male 20.8761 90 103 3.25
29 5713 36 8 Male 16.2683 89 97 3.28
203 6136 216 1 Male 32.7912 92 89 3.29
217 4865 240 35 Male 58.3354 93 105 3.3
71 5014 46 7 Female 23.7618 75 90 3.3
35 6179 22 2 Male 38.0123 89 95 3.31
213 1892 276 2 Male 21.7796 87 107 3.33
91 6795 55 0 Male 30.7159 87 104 3.34
15 4802 36 0 Male 62.475 88 97 3.34
72 5192 60 1 Male 58.6283 87 97 3.4
61 4189 69 4 Female 29.462 75 86 3.4
267 1157 810 23 Male 17.3881 97 84 3.4
197 5456 193 14 Male 41.1636 87 110 3.4
165 6314 140 3 Male 16.6927 87 96 3.41
242 4902 397 8 Male 16.1424 92 86 3.42
155 4807 139 14 Female 47.7974 80 78 3.42
318 4744 1743 25 Male 57.566 97 118 3.43
93 7084 54 2 Male 36.5722 87 93 3.49
81 5580 56 7 Male 17.7933 86 95 3.5
131 5387 109 12 Male 21.7988 85 112 3.54
115 6410 80 14 Male 32.1725 85 98 3.55
82 5581 65 2 Male 26.3053 85 95 3.56
322 2653 2191 28 Male 30.0068 117 129 3.57
12 4542 22 11 Female 21.9576 71 89 3.58
1 3358 30 4 Male 20.6708 87 89 3.6
30 5736 18 9 Male 16.1478 89 86 3.6
290 3032 884 20 Male 16.9391 87 93 3.61
56 3762 48 6 Male 20.3559 85 93 3.61
80 5568 64 1 Female 51.9918 75 79 3.63
38 6870 22 0 Male 42.4832 84 95 3.63
84 6154 43 5 Female 22.6064 74 80 3.65
78 5458 44 14 Male 34.4778 84 95 3.66
46 2364 41 14 Male 25.8097 84 94 3.68
260 6226 438 0 Male 36.8022 84 92 3.68
39 6914 43 0 Male 61.5222 85 90 3.69
24 5298 30 3 Male 22.9569 87 86 3.7
31 5754 36 1 Male 16.3368 87 86 3.7
16 4941 46 4 Female 19.0144 69 88 3.72
185 5680 184 1 Male 27.7563 84 90 3.73
306 4865 1363 35 Male 58.3354 88 104 3.73
27 5680 17 1 Male 27.7563 84 90 3.74
2 3535 16 17 Male 55.2882 95 77 3.75
133 5494 111 7 Male 54.6913 86 86 3.75
36 6671 30 7 Female 27.8056 71 82 3.76
19 5154 35 5 Male 22.1903 82 95 3.76
199 5712 192 14 Male 22.2697 87 85 3.76
262 6468 513 60 Male 43.4798 99 94 3.81
149 4133 133 14 Male 20 82 94 3.81
89 6614 57 0 Male 45.1116 80 101 3.81
54 3544 32 14 Male 54.5298 81 98 3.81
176 4865 142 35 Male 58.3354 84 103 3.82
86 6314 58 3 Male 16.6927 80 99 3.82
77 5456 48 14 Male 41.1636 80 101 3.84
130 5339 119 7 Male 21.8152 87 82 3.85
187 6180 177 12 Male 20.7201 81 94 3.85
226 6498 270 28 Male 24.0767 82 101 3.85
143 1176 146 17 Female 19.729 65 98 3.85
42 7120 39 0 Male 69.7057 84 86 3.86
219 5222 247 30 Male 22.5298 88 85 3.87
10 4356 31 7 Male 21.399 86 83 3.87
68 4837 42 10 Male 19.6906 83 88 3.88
112 5879 75 21 Male 25.8453 80 105 3.89
265 781 714 15 Male 29.8699 85 85 3.89
76 5289 52 1 Male 48.5722 84 85 3.9
102 4807 64 14 Female 47.7974 74 74 3.9
291 3226 1123 0 Male 27.4552 88 81 3.9
215 3058 236 28 Male 22.2533 85 88 3.91
276 3226 683 0 Male 27.4552 89 78 3.92
145 2882 141 18 Male 19.2334 84 85 3.95
44 7321 23 0 Male 26.0041 84 83 3.97
283 6059 794 1 Female 16.9801 71 76 3.97
174 4638 140 17 Male 20.512 89 78 3.97
210 5386 241 21 Male 20.8761 80 94 3.98
285 6247 616 13 Male 42.3162 85 82 3.98
99 3844 73 9 Male 26.1164 79 94 3.98
178 5009 174 7 Male 24.3806 77 103 3.99
58 4094 50 2 Male 19.7262 79 93 3.99
246 5289 417 1 Male 48.5722 83 83 4.02
216 4342 263 1 Male 44.063 79 91 4.02
95 7371 55 1 Male 56.7858 80 88 4.04
122 4902 102 8 Male 16.1424 87 77 4.07
259 5841 415 8 Male 27.2279 82 83 4.08
274 2849 642 0 Male 20.0876 76 98 4.09
280 5222 690 30 Male 22.5298 81 90 4.11
320 1075 2259 42 Female 27.2772 78 79 4.13
108 5386 78 21 Male 20.8761 78 93 4.13
14 4744 15 25 Male 57.566 82 85 4.15
75 5280 83 1 Male 48.6434 78 88 4.16
194 4933 226 0 Male 18.4559 79 86 4.16
316 4638 1779 17 Male 20.512 92 76 4.18
195 4962 210 1 Female 25.1964 71 70 4.19
18 5129 26 1 Male 25.0459 77 89 4.2
275 3032 525 20 Male 16.9391 79 87 4.2
261 6247 389 13 Male 42.3162 82 80 4.21
189 2124 173 30 Male 30.7625 76 106 4.23
198 5668 219 7 Male 40.9227 76 90 4.23
11 4384 35 8 Male 36.3806 76 90 4.24
307 5009 1537 7 Male 24.3806 76 112 4.26
244 5111 442 7 Male 21.6947 77 86 4.28
169 3237 189 9 Male 49.8508 79 82 4.3
297 5617 1113 17 Male 19.7864 78 87 4.3
301 6140 1077 44 Female 21.4209 65 88 4.32
327 2600 3337 9 Male 43.9398 101 84 4.33
128 5222 93 30 Male 22.5298 77 91 4.33
230 6214 318 0 Male 60.3176 78 82 4.34
103 4892 62 21 Male 22.0397 76 88 4.36
319 6140 1742 44 Female 21.4209 67 87 4.36
227 2081 185 43 Male 17.6975 77 97 4.42
206 7173 210 4 Male 24.9801 79 78 4.44
104 4962 63 1 Female 25.1964 69 67 4.44
120 4218 82 28 Male 25.9904 74 92 4.47
252 5599 443 21 Male 18.7488 78 80 4.48
106 5222 63 30 Male 22.5298 77 85 4.48
164 5818 125 14 Male 34.9268 72 91 4.49
212 6247 228 13 Male 42.3162 77 80 4.49
258 5811 431 25 Male 80.0328 78 80 4.52
222 5600 232 0 Male 48.7885 75 81 4.55
109 5534 87 14 Male 29.2621 75 82 4.55
186 5782 108 68 Female 19.6715 69 85 4.56
69 4996 51 12 Male 43.0281 77 78 4.58
64 4638 20 17 Male 20.512 82 72 4.59
32 5776 26 8 Male 17.128 71 88 4.6
302 7061 923 0 Male 36.8816 74 81 4.64
303 651 1491 21 Male 22.0068 71 94 4.67
59 4133 34 14 Male 20 70 88 4.69
117 7221 98 0 Male 63.5044 74 79 4.69
37 6859 27 1 Male 34.2122 74 79 4.69
323 3592 2569 10 Male 61.6646 76 93 4.72
179 5111 177 7 Male 21.6947 72 81 4.73
287 626 870 55 Male 19.7536 80 85 4.75
7 3807 37 5 Male 24.6762 74 77 4.76
136 6135 96 18 Male 26.5626 66 105 4.76
184 5599 148 21 Male 18.7488 72 81 4.8
26 5668 27 7 Male 40.9227 72 79 4.81
286 405 986 0 Male 21.4702 66 116 4.82
126 5111 107 7 Male 21.6947 71 80 4.82
193 4775 180 28 Male 53.5551 70 86 4.83
123 4933 134 0 Male 18.4559 69 83 4.85
87 6340 71 0 Male 19.3238 76 72 4.85
98 3645 43 45 Male 27.4935 72 90 4.86
309 5085 1512 2 Male 49.0267 75 75 4.91
118 2453 120 10 Male 37.2758 63 99 4.94
116 7173 84 4 Male 24.9801 72 75 4.94
142 6834 123 0 Male 30.7488 72 75 4.94
85 6180 59 12 Male 20.7201 67 84 4.96
148 3913 96 42 Female 23.9233 56 80 4.96
47 2600 3333 9 Male 43.9398 86 80 4.97
6 3790 13 3 Male 57.0623 76 69 4.99
113 5893 71 21 Male 22.8118 65 90 4.99
200 5893 200 21 Male 22.8118 65 89 5.01
70 5009 50 7 Male 24.3806 61 104 5.05
146 3051 131 13 Male 37.2403 68 79 5.05
231 7034 280 60 Male 23.1376 78 80 5.07
288 1075 907 42 Female 27.2772 63 64 5.12
266 1048 576 94 Male 20.115 91 96 5.14
269 1611 511 60 Male 23.2799 69 107 5.16
314 3768 1916 0 Male 19.1102 69 80 5.16
237 3226 444 0 Male 27.4552 76 64 5.21
134 5896 126 4 Female 26.8775 50 74 5.25
88 6564 69 0 Male 34.4997 67 74 5.26
218 5085 269 2 Male 49.0267 65 77 5.26
5 3728 19 6 Male 30.1273 67 73 5.3
166 6664 164 2 Male 24.7337 66 73 5.34
110 5712 88 14 Male 22.2697 70 68 5.36
138 6214 112 0 Male 60.3176 65 74 5.37
125 5085 117 2 Male 49.0267 67 71 5.38
97 3058 56 28 Male 22.2533 65 75 5.45
238 3467 333 42 Male 25.3936 68 74 5.46
49 3237 65 9 Male 49.8508 67 67 5.55
325 651 3412 21 Male 22.0068 68 92 5.62
328 3835 4933 14 Male 25.9932 91 88 5.69
4 3592 13 10 Male 61.6646 59 73 5.77
268 1493 684 60 Male 17.8042 66 75 5.83
144 2849 151 0 Male 20.0876 51 86 5.89
96 2569 49 35 Male 18.7159 50 101 5.94
232 1493 453 60 Male 17.8042 59 81 6.03
310 1939 1926 130 Male 28.2738 95 108 6.41
208 3467 186 42 Male 25.3936 53 69 6.45
167 1048 85 94 Male 20.115 63 82 6.51
271 1939 562 130 Male 28.2738 85 111 6.51
321 1939 3111 130 Male 28.2738 88 111 6.93
234 1939 295 130 Male 28.2738 67 117 7.17
326 1939 3864 130 Male 28.2738 88 105 7.22
329 2773 7631 42 Male 6.51335 88 103 7.96
311 2662 1569 180 Male 28.0821 90 101 8.24
331 5964 11038 0 Male 12.8363 71 73 11.23
330 5142 11628 57 Male 16.4326 101 95 11.25
305 2638 1093 255 Male 16.5613 78 84 11.27
257 5804 354 2 Female 42.24 122 105 nan